Defect detection of large wind turbine blades based on image stitching and improved Unet network

图像拼接 计算机科学 涡轮机 人工智能 风力发电 涡轮叶片 分割 图像分割 卷积神经网络 可扩展性 计算机视觉 工程类 航空航天工程 数据库 电气工程
作者
Wanrun Li,Zihong Pan,Na Hong,Yongfeng Du
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:15 (1) 被引量:5
标识
DOI:10.1063/5.0125563
摘要

Aiming at the problem that the existing computer vision detection technology is difficult to comprehensively and carefully detect the damage status of large wind turbine blades due to the limitation of the field of view, this paper proposes a refined and multi-scale detection method for large-scale wind turbine blades by combining an image stitching algorithm and a deep learning network. First of all, combining the image stitching algorithm with image weighted fusion, images of large wind turbine blades shot in close range are stitched together, so as to realize the clear restoration of the full size and defects of the blades. On this basis, an improved Unet network VGG16Unet is proposed. Combined with transfer learning, the classification and detection of various defects on wind turbine blades under the condition of small dataset training are realized. Finally, by the aid of the combination of the image stitching algorithm and the semantic segmentation network, the refined damage detection of the overall structure of large wind turbine blades is implemented. The research shows that the mean pixel accuracy and the mean intersection over union of the VGG16Unet model are 95.33% and 85.20%, respectively, which is better than the classical semantic segmentation models, fully convolutional neural network model and Unet model. The combination of the VGG16Unet model and the image stitching algorithm not only realizes the global detection of the entire structure but also ensures the detailed detection of each local area, which makes the detection of large wind turbine blades more comprehensive and refined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
kimoto完成签到 ,获得积分10
2秒前
行路1发布了新的文献求助10
2秒前
tenure完成签到,获得积分10
3秒前
5秒前
6秒前
6秒前
高球球发布了新的文献求助10
6秒前
阿沫发布了新的文献求助50
7秒前
7秒前
nick完成签到,获得积分10
8秒前
pyt发布了新的文献求助10
10秒前
10秒前
柔弱友卉给补丁的求助进行了留言
11秒前
吧嗒嗒发布了新的文献求助10
11秒前
爆米花应助无私的易蓉采纳,获得10
11秒前
彭于晏应助pyt采纳,获得10
13秒前
东陈西就完成签到,获得积分10
13秒前
13秒前
墨风完成签到,获得积分10
13秒前
柚子精发布了新的文献求助10
14秒前
Silieze完成签到,获得积分10
14秒前
vvdd完成签到,获得积分10
15秒前
FashionBoy应助高球球采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得30
16秒前
大个应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
17秒前
SQXT应助科研通管家采纳,获得40
17秒前
17秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462453
求助须知:如何正确求助?哪些是违规求助? 3056020
关于积分的说明 9050191
捐赠科研通 2745593
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696123
邀请新用户注册赠送积分活动 695633