已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing item-based collaborative filtering by users’ similarities injection and low-quality data handling

协同过滤 计算机科学 推荐系统 RSS 背景(考古学) 信息过载 数据挖掘 质量(理念) 冷启动(汽车) 情报检索 机器学习 万维网 工程类 哲学 航空航天工程 古生物学 认识论 生物
作者
Fethi Fkih
出处
期刊:Data and Knowledge Engineering [Elsevier BV]
卷期号:144: 102126-102126 被引量:15
标识
DOI:10.1016/j.datak.2022.102126
摘要

With the increasing amount of the commercial items (movies, music, books, cars, etc.) produced each day by companies, it becomes very difficult for customers to find the suitable products satisfying their needs. Generally, Recommendation Systems (RSs) were used to fit this necessary requirement by solving the problem of information overload, specially on the web. Indeed, RS are designed to provide relevant resources to a client using certain information about users and resources. To the best of our knowledge, RS remains providing modest performances in many domains. In this context, we proposed a new model named CSWMC that combines two different techniques: item-based and user-based Collaborative Filtering. In fact, our proposed algorithm starts with the estimation of the suitable number of the user’s neighbors that offers to the Recommender System the optimal efficiency. Then, the system integrates this knowledge about users in the ‘Mean Centered’ aggregation method. Also, we proposed a simple method for handling the cold start and data sparsity problems that used mean value of the training datasets. The proposed models were validated through an experimental study on three standards datasets and compared with six well-known models. The obtained results demonstrated that our proposed model (in its two versions: with and without cold start handling) outperforms all the other models in terms of three evaluation metrics: RMSE, MAE and R2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新来的家伙完成签到 ,获得积分10
1秒前
英俊的铭应助errui采纳,获得10
1秒前
1秒前
哈哈哈完成签到 ,获得积分10
2秒前
zhang发布了新的文献求助10
4秒前
9秒前
木吉完成签到,获得积分10
9秒前
10秒前
华仔应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Seagull完成签到,获得积分10
13秒前
绝不秃头发布了新的文献求助10
14秒前
肃肃其羽发布了新的文献求助10
15秒前
21秒前
大胆的碧菡完成签到,获得积分10
26秒前
27秒前
Dsivan发布了新的文献求助10
27秒前
绝不秃头完成签到,获得积分10
27秒前
GAGA完成签到,获得积分10
28秒前
赧赧完成签到 ,获得积分10
31秒前
科研通AI2S应助机智的莫茗采纳,获得10
33秒前
Eve完成签到,获得积分10
33秒前
烟花应助AK采纳,获得10
35秒前
田様应助swalker采纳,获得10
36秒前
songflower完成签到,获得积分10
37秒前
37秒前
感动芷卉完成签到,获得积分10
39秒前
42秒前
43秒前
44秒前
GAGA发布了新的文献求助10
44秒前
ding应助宗忻采纳,获得10
44秒前
47秒前
MY完成签到 ,获得积分10
48秒前
swalker发布了新的文献求助10
50秒前
小灰灰发布了新的文献求助10
51秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733271
求助须知:如何正确求助?哪些是违规求助? 3277434
关于积分的说明 10002612
捐赠科研通 2993338
什么是DOI,文献DOI怎么找? 1642645
邀请新用户注册赠送积分活动 780555
科研通“疑难数据库(出版商)”最低求助积分说明 748892