pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Open‐Porous Fibrin‐Collagen Hydrogel Blends without Chemical Cross‐Linker

纤维蛋白 材料科学 连接器 凝血酶 化学工程 自愈水凝胶 生物物理学 多孔性 高分子化学 复合材料 生物医学工程 血小板 生物 操作系统 工程类 医学 免疫学 计算机科学
作者
Mattis Wachendörfer,Eva Miriam Buhl,Ghazi Ben Messaoud,Walter Richtering,Horst Fischer
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:12 (10) 被引量:11
标识
DOI:10.1002/adhm.202203302
摘要

Fibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability. Different fibrin-collagen formulations (pure and with additional transglutaminase) are used and the blends' compaction rate, hydrolytic stability, compressive strength, and hydrogel microstructure are investigated. The effect of thrombin concentration on gel compaction is examined and the importance of pH control during synthesis observed. It is revealed that transglutaminase impairs gel stability and it is deduced that fibrin-collagen blends mainly cross-link by mechanical interactions due to physical fibril entanglement as opposed to covalent bonds from chemical cross-linking. High thrombin concentrations and basic pH during synthesis reduce gel compaction and enhance stiffness and long-term stability. Scanning electron microscopy reveals a highly interpenetrating fibrous network with unique, interconnected open-porous microstructures. Endothelial cells proliferate on the blends and form a confluent monolayer. This study reveals the underlying cross-linking mechanisms and presents enhanced fibrin-collagen blends with high stiffness, hydrolytic stability, and large, interconnected pores; findings that offer high potential for advanced tissue engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠菜菜str完成签到,获得积分10
1秒前
悟空发布了新的文献求助10
1秒前
优雅山柏发布了新的文献求助10
1秒前
1秒前
junc发布了新的文献求助20
1秒前
memory发布了新的文献求助10
1秒前
罗曼长情雪兰完成签到,获得积分10
2秒前
酷炫板凳发布了新的文献求助10
2秒前
Sue发布了新的文献求助10
2秒前
3秒前
张先森完成签到,获得积分10
3秒前
Orange应助饭小心采纳,获得10
3秒前
jason完成签到,获得积分10
3秒前
3秒前
3秒前
糖糖完成签到,获得积分10
4秒前
小二郎应助幸福胡萝卜采纳,获得10
4秒前
4秒前
亵渎完成签到,获得积分10
4秒前
mc1220完成签到,获得积分10
5秒前
5秒前
冰刀完成签到,获得积分10
6秒前
kid1412完成签到 ,获得积分10
7秒前
LU完成签到,获得积分10
7秒前
小蘑菇应助R先生采纳,获得50
7秒前
7秒前
小嘎完成签到 ,获得积分10
8秒前
8秒前
8秒前
小虎发布了新的文献求助30
8秒前
9秒前
superworm1完成签到,获得积分10
9秒前
不懂事的小孩完成签到,获得积分10
9秒前
张瑶完成签到,获得积分10
9秒前
chloe完成签到 ,获得积分10
9秒前
桐桐应助申小萌采纳,获得10
10秒前
星星泡饭完成签到,获得积分10
10秒前
健忘曼云完成签到,获得积分10
10秒前
晶晶妹妹发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762