光热治疗
体内
生物相容性
材料科学
癌症研究
纳米技术
生物物理学
医学
生物
生物技术
冶金
作者
Chao-Qing Li,Xiaolin Hou,Dong-Xue Jiang,Bin Zhang,Meng-Wen Ma,Xiao‐Ting Xie,Yuan‐Di Zhao,Tiancai Liu,Bo Liu
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2022-12-07
卷期号:10 (50): 16598-16610
被引量:10
标识
DOI:10.1021/acssuschemeng.2c04294
摘要
Photothermal therapy is a powerful candidate for tumor treatment. However, photothermal therapy still faces some challenges, such as lacking photothermal agents with high photothermal conversion efficiency and undesirable inflammatory responses, which may result in tumor recurrence and therapeutic resistance. Here, the Pt/Te nanoheterostructures (PT) were synthesized by a simple hydrothermal reaction. The photothermal conversion efficiency was up to 51.84%. The outstanding photothermal conversion capacity of PT was attributed to the unique localized surface plasmon resonance frequency of metals and semiconductors and the increased circuit paths of electron transitions from nanoheterostructures. After coating with the murine mammary carcinoma (4T1) cell membrane, the camouflaged PT (mPT) exhibits excellent biocompatibility and effective homologous targeting capacity. Benefiting from antioxidative activity, mPT can efficiently scavenge inflammation-related reactive oxygen species and cytokines (such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6) caused by hyperthermia to alleviate inflammation in vitro and in vivo. The in vitro and in vivo therapeutic results showed that mPT could effectively inhibit 4T1 breast tumors. In addition, the in vivo therapy could be guided by photoacoustic imaging. These results demonstrated that these multifunctional mPT provide a paradigm for biomimetic metal and semiconductor nanoheterostructures for enhanced photothermal therapy and anti-inflammatory action on tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI