Comparison ofMRIandCT‐Based Radiomics and Their Combination for Early Identification of Pathological Response to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer

医学 列线图 有效扩散系数 磁共振成像 放射科 接收机工作特性 核医学 磁共振弥散成像 分级(工程) 无线电技术 曲线下面积 新辅助治疗 癌症 肿瘤科 乳腺癌 内科学 工程类 土木工程
作者
Jing Li,Huiling Zhang,Hongkun Yin,Hanshuo Zhang,Yi Wang,Shuning Xu,Fei Ma,Jianbo Gao,Hailiang Li,Jinrong Qu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (3): 907-923 被引量:21
标识
DOI:10.1002/jmri.28570
摘要

Background Current radiomics for treatment response assessment in gastric cancer (GC) have focused solely on Computed tomography (CT). The importance of multi‐parametric magnetic resonance imaging (mp‐MRI) radiomics in GC is less clear. Purpose To compare and combine CT and mp‐MRI radiomics for pretreatment identification of pathological response to neoadjuvant chemotherapy in GC. Study Type Retrospective. Population Two hundred twenty‐five GC patients were recruited and split into training (157) and validation dataset (68) in the ratio of 7:3 randomly. Field/Sequence T2‐weighted fast spin echo (fat suppressed T2‐weighted imaging [fs‐T2WI]), diffusion weighted echo planar imaging (DWI), and fast gradient echo (dynamic contrast enhanced [DCE]) sequences at 3.0T. Assessment Apparent diffusion coefficient (ADC) maps were generated from DWI. CT, fs‐T2WI, ADC, DCE, and mp‐MRI Radiomics score (Radscores) were compared between responders and non‐responders. A multimodal nomogram combining CT and mp‐MRI Radscores was developed. Patients were followed up for 3–65 months (median 19) after surgery, the overall survival (OS) and progression free survival (PFS) were calculated. Statistical Tests A logistic regression classifier was applied to construct the five models. Each model's performance was evaluated using a receiver operating characteristic curve. The association of the nomogram with OS/PFS was evaluated by Kaplan–Meier survival analysis and C‐index. A P value <0.05 was considered statistically significant. Results CT Radscore, mp‐MRI Radscore and nomogram were significantly associated with tumor regression grading. The nomogram achieved the highest area under the curves (AUCs) of 0.893 (0.834–0.937) and 0.871 (0.767–0.940) in training and validation datasets, respectively. The C‐index was 0.589 for OS and 0.601 for PFS. The AUCs of the mp‐MRI model were not significantly different to that of the CT model in training (0.831 vs. 0.770, P = 0.267) and validation dataset (0.797 vs. 0.746, P = 0.137). Data Conclusions mp‐MRI radiomics provides similar results to CT radiomics for early identification of pathologic response to neoadjuvant chemotherapy. The multimodal radiomics nomogram further improved the capability. Evidence Level 3 Technical Efficacy 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drjyang完成签到,获得积分10
1秒前
AiQi完成签到 ,获得积分10
2秒前
闻屿完成签到,获得积分10
4秒前
sun完成签到,获得积分10
6秒前
mugglea完成签到 ,获得积分10
6秒前
上官若男应助白江虎采纳,获得10
6秒前
优雅的千雁完成签到,获得积分10
7秒前
kmzzy完成签到 ,获得积分10
9秒前
77完成签到 ,获得积分10
9秒前
bi完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
哼哼啊嗯哼啊完成签到 ,获得积分10
12秒前
刻苦羽毛完成签到 ,获得积分10
13秒前
王QQ完成签到 ,获得积分10
13秒前
Felix完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
阿呷惹完成签到,获得积分10
14秒前
悦耳冰蓝完成签到,获得积分10
14秒前
Sleven完成签到,获得积分10
16秒前
科研小郭完成签到,获得积分10
17秒前
六六完成签到,获得积分10
18秒前
专注的映之完成签到 ,获得积分10
18秒前
wang完成签到,获得积分10
19秒前
Roy完成签到,获得积分10
19秒前
刘国材完成签到 ,获得积分10
21秒前
热心幻翠完成签到 ,获得积分10
21秒前
21秒前
一个漂流瓶完成签到,获得积分10
23秒前
强壮的美女完成签到,获得积分10
23秒前
素和姣姣完成签到 ,获得积分10
24秒前
当女遇到乔完成签到 ,获得积分10
24秒前
震动的鹏飞完成签到 ,获得积分10
25秒前
yurunxintian完成签到,获得积分10
25秒前
guard发布了新的文献求助10
25秒前
TheGreat完成签到,获得积分10
28秒前
zlk完成签到 ,获得积分10
30秒前
BinSir完成签到 ,获得积分10
30秒前
32秒前
yoga完成签到 ,获得积分10
34秒前
Brenna完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858