Comparison ofMRIandCT‐Based Radiomics and Their Combination for Early Identification of Pathological Response to Neoadjuvant Chemotherapy in Locally Advanced Gastric Cancer

医学 列线图 有效扩散系数 磁共振成像 放射科 接收机工作特性 核医学 磁共振弥散成像 分级(工程) 无线电技术 曲线下面积 新辅助治疗 癌症 肿瘤科 乳腺癌 内科学 工程类 土木工程
作者
Jing Li,Huiling Zhang,Hongkun Yin,Hanshuo Zhang,Yi Wang,Shuning Xu,Fei Ma,Jianbo Gao,Hailiang Li,Jinrong Qu
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:58 (3): 907-923 被引量:21
标识
DOI:10.1002/jmri.28570
摘要

Background Current radiomics for treatment response assessment in gastric cancer (GC) have focused solely on Computed tomography (CT). The importance of multi‐parametric magnetic resonance imaging (mp‐MRI) radiomics in GC is less clear. Purpose To compare and combine CT and mp‐MRI radiomics for pretreatment identification of pathological response to neoadjuvant chemotherapy in GC. Study Type Retrospective. Population Two hundred twenty‐five GC patients were recruited and split into training (157) and validation dataset (68) in the ratio of 7:3 randomly. Field/Sequence T2‐weighted fast spin echo (fat suppressed T2‐weighted imaging [fs‐T2WI]), diffusion weighted echo planar imaging (DWI), and fast gradient echo (dynamic contrast enhanced [DCE]) sequences at 3.0T. Assessment Apparent diffusion coefficient (ADC) maps were generated from DWI. CT, fs‐T2WI, ADC, DCE, and mp‐MRI Radiomics score (Radscores) were compared between responders and non‐responders. A multimodal nomogram combining CT and mp‐MRI Radscores was developed. Patients were followed up for 3–65 months (median 19) after surgery, the overall survival (OS) and progression free survival (PFS) were calculated. Statistical Tests A logistic regression classifier was applied to construct the five models. Each model's performance was evaluated using a receiver operating characteristic curve. The association of the nomogram with OS/PFS was evaluated by Kaplan–Meier survival analysis and C‐index. A P value <0.05 was considered statistically significant. Results CT Radscore, mp‐MRI Radscore and nomogram were significantly associated with tumor regression grading. The nomogram achieved the highest area under the curves (AUCs) of 0.893 (0.834–0.937) and 0.871 (0.767–0.940) in training and validation datasets, respectively. The C‐index was 0.589 for OS and 0.601 for PFS. The AUCs of the mp‐MRI model were not significantly different to that of the CT model in training (0.831 vs. 0.770, P = 0.267) and validation dataset (0.797 vs. 0.746, P = 0.137). Data Conclusions mp‐MRI radiomics provides similar results to CT radiomics for early identification of pathologic response to neoadjuvant chemotherapy. The multimodal radiomics nomogram further improved the capability. Evidence Level 3 Technical Efficacy 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
4秒前
淞淞于我完成签到 ,获得积分10
4秒前
花花发布了新的文献求助10
4秒前
灵巧的朝雪完成签到 ,获得积分10
6秒前
陈秋完成签到,获得积分10
8秒前
跳跃的鹏飞完成签到 ,获得积分0
13秒前
哥哥发布了新的文献求助10
13秒前
xgx984完成签到,获得积分10
14秒前
leemiii完成签到 ,获得积分10
32秒前
Lyw完成签到 ,获得积分10
36秒前
夕阳下仰望完成签到 ,获得积分10
38秒前
陌上完成签到 ,获得积分10
44秒前
单纯的小土豆完成签到 ,获得积分0
46秒前
guoxihan完成签到,获得积分10
55秒前
puritan完成签到 ,获得积分10
55秒前
沉静香氛完成签到 ,获得积分10
56秒前
枯叶蝶完成签到 ,获得积分10
57秒前
ramsey33完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
1分钟前
夜未央完成签到 ,获得积分10
1分钟前
DZS完成签到 ,获得积分10
1分钟前
wml发布了新的文献求助10
1分钟前
七厘米发布了新的文献求助10
1分钟前
506407完成签到,获得积分10
1分钟前
土拨鼠完成签到 ,获得积分0
1分钟前
liukanhai完成签到,获得积分10
1分钟前
豆⑧完成签到,获得积分10
1分钟前
不劳而获完成签到 ,获得积分10
1分钟前
JUN完成签到,获得积分10
1分钟前
shacodow完成签到,获得积分10
1分钟前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
龙弟弟完成签到 ,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370