亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
7秒前
8秒前
shinn发布了新的文献求助10
11秒前
酷波er应助JayTEE采纳,获得10
12秒前
14秒前
gjz关闭了gjz文献求助
15秒前
阳光的衫完成签到,获得积分10
17秒前
18秒前
小蘑菇应助shinn采纳,获得10
19秒前
Cupid完成签到,获得积分10
20秒前
Jayzie完成签到 ,获得积分10
21秒前
上官若男应助nn666采纳,获得10
22秒前
22秒前
24秒前
白糖发布了新的文献求助10
25秒前
28秒前
lzp完成签到 ,获得积分10
28秒前
阁主完成签到,获得积分10
30秒前
Soient发布了新的文献求助10
31秒前
33秒前
shinn发布了新的文献求助10
34秒前
38秒前
大个应助小年小少采纳,获得10
42秒前
科目三应助耕云钓月采纳,获得10
44秒前
59秒前
大个应助shinn采纳,获得10
1分钟前
边雨完成签到 ,获得积分10
1分钟前
LEETHEO发布了新的文献求助10
1分钟前
冷酷愚志完成签到,获得积分10
1分钟前
微微旺旺应助科研通管家采纳,获得200
1分钟前
Ming应助科研通管家采纳,获得10
1分钟前
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
1分钟前
自由大碗完成签到 ,获得积分10
1分钟前
BowieHuang应助ylh采纳,获得10
1分钟前
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
FashionBoy应助shinn采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772485
求助须知:如何正确求助?哪些是违规求助? 5599333
关于积分的说明 15429737
捐赠科研通 4905440
什么是DOI,文献DOI怎么找? 2639413
邀请新用户注册赠送积分活动 1587330
关于科研通互助平台的介绍 1542210