A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轨迹应助77采纳,获得20
3秒前
Tbin完成签到,获得积分10
3秒前
gulin完成签到,获得积分10
4秒前
huahua完成签到 ,获得积分10
5秒前
研友_VZGVzn完成签到,获得积分10
11秒前
随随完成签到 ,获得积分10
12秒前
zouni完成签到,获得积分10
14秒前
九月完成签到,获得积分10
14秒前
不秃燃的小老弟完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
Sandy发布了新的文献求助10
19秒前
20秒前
张晨完成签到 ,获得积分10
20秒前
Clifton完成签到 ,获得积分10
21秒前
邓大瓜完成签到,获得积分10
21秒前
Asumita完成签到,获得积分10
21秒前
24秒前
DrPika完成签到,获得积分10
26秒前
efengmo完成签到,获得积分10
28秒前
Vegeta完成签到 ,获得积分10
30秒前
冷酷夏真完成签到 ,获得积分10
32秒前
Akim应助历史真相采纳,获得10
33秒前
小事完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
犹豫的雨柏完成签到,获得积分10
36秒前
GXW完成签到,获得积分10
36秒前
Qian完成签到,获得积分10
37秒前
37秒前
11完成签到,获得积分10
39秒前
Astra完成签到,获得积分10
40秒前
害怕的冰颜完成签到 ,获得积分10
42秒前
都都完成签到 ,获得积分10
44秒前
Loey完成签到,获得积分10
44秒前
wuju完成签到,获得积分10
46秒前
47秒前
spicyfish完成签到,获得积分10
48秒前
勤奋的花卷完成签到 ,获得积分10
48秒前
HopeLee完成签到,获得积分10
49秒前
ybcy完成签到,获得积分10
49秒前
pl完成签到 ,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839