A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的依风完成签到,获得积分10
刚刚
刚刚
愉快的苑博完成签到,获得积分10
1秒前
科研通AI6应助itharmony采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
yuhuzhouye完成签到,获得积分10
2秒前
Shelby发布了新的文献求助10
2秒前
2秒前
ballbrother发布了新的文献求助10
3秒前
土木搬砖法律完成签到,获得积分10
3秒前
Mic应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Jared应助科研通管家采纳,获得10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
进击的PhD应助科研通管家采纳,获得20
3秒前
小鱼应助科研通管家采纳,获得10
3秒前
木兮发布了新的文献求助10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
杜玥宁完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
4秒前
香蕉诗蕊应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
Jared应助科研通管家采纳,获得10
4秒前
老福贵儿应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Mic应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
smottom应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660943
求助须知:如何正确求助?哪些是违规求助? 4836395
关于积分的说明 15092694
捐赠科研通 4819601
什么是DOI,文献DOI怎么找? 2579405
邀请新用户注册赠送积分活动 1533827
关于科研通互助平台的介绍 1492605