A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方元语完成签到,获得积分0
刚刚
花花完成签到,获得积分10
1秒前
淡淡的忆彤完成签到,获得积分10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
机智的顺溜应助PeterLin采纳,获得10
5秒前
CipherSage应助碧蓝青梦采纳,获得10
5秒前
浅浅的发布了新的文献求助10
6秒前
6秒前
zzzzzyq发布了新的文献求助10
8秒前
8秒前
烟花应助淡淡的忆彤采纳,获得10
9秒前
T723发布了新的文献求助300
10秒前
10秒前
wwwww123发布了新的文献求助10
11秒前
swan完成签到 ,获得积分10
11秒前
Rokemonis3Kg完成签到,获得积分10
11秒前
12秒前
12秒前
无极微光应助东方元语采纳,获得20
13秒前
13秒前
15秒前
Lucas应助石榴汁的书采纳,获得10
15秒前
希望天下0贩的0应助en采纳,获得10
16秒前
qwe完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
smottom应助wwwww123采纳,获得10
17秒前
19秒前
求助文献发布了新的文献求助10
19秒前
19秒前
冷傲的若风完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
坨坨完成签到 ,获得积分10
20秒前
烟花应助翰林采纳,获得10
20秒前
紧张的友灵完成签到,获得积分10
21秒前
21秒前
22秒前
科研通AI6.1应助Roy采纳,获得10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5749974
求助须知:如何正确求助?哪些是违规求助? 5461658
关于积分的说明 15365193
捐赠科研通 4889239
什么是DOI,文献DOI怎么找? 2629002
邀请新用户注册赠送积分活动 1577297
关于科研通互助平台的介绍 1533917