亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
趁微风不躁完成签到,获得积分10
11秒前
烟花应助mww采纳,获得30
13秒前
痞老板死磕蟹黄堡完成签到 ,获得积分10
19秒前
姆姆没买完成签到 ,获得积分0
33秒前
47秒前
valere完成签到 ,获得积分10
48秒前
1分钟前
bkagyin应助air采纳,获得10
1分钟前
小唐发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
SciGPT应助健康的念梦采纳,获得10
1分钟前
中華人民共和完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
英姑应助跳跃的滑板采纳,获得10
1分钟前
2分钟前
Mio完成签到 ,获得积分10
2分钟前
能干梦安应助雪白小丸子采纳,获得10
2分钟前
快乐的睫毛完成签到 ,获得积分10
2分钟前
2分钟前
linkman发布了新的文献求助10
2分钟前
能干梦安应助君莫笑采纳,获得10
2分钟前
jokerhoney完成签到,获得积分0
2分钟前
mww关注了科研通微信公众号
2分钟前
微笑的鼠标完成签到 ,获得积分10
2分钟前
勤奋的猫咪完成签到 ,获得积分10
2分钟前
这样说话发布了新的文献求助10
2分钟前
2分钟前
2分钟前
xiaona完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657891
求助须知:如何正确求助?哪些是违规求助? 4813480
关于积分的说明 15080529
捐赠科研通 4816091
什么是DOI,文献DOI怎么找? 2577100
邀请新用户注册赠送积分活动 1532119
关于科研通互助平台的介绍 1490669