A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
3秒前
大头好困发布了新的文献求助10
3秒前
3秒前
Owen应助hihi采纳,获得10
4秒前
5秒前
kate完成签到,获得积分10
6秒前
6秒前
平常晓山发布了新的文献求助10
6秒前
8秒前
8秒前
kate发布了新的文献求助10
8秒前
包容新蕾发布了新的文献求助10
9秒前
柚子发布了新的文献求助10
10秒前
10秒前
10秒前
今后应助北执采纳,获得10
11秒前
11秒前
DuYuqi发布了新的文献求助10
12秒前
MJS发布了新的文献求助50
14秒前
所所应助彩色不评采纳,获得10
14秒前
14秒前
14秒前
Magic发布了新的文献求助30
15秒前
觞f完成签到,获得积分10
16秒前
16秒前
16秒前
Jinyi发布了新的文献求助10
16秒前
孔令涵完成签到,获得积分10
16秒前
18秒前
自由run发布了新的文献求助30
19秒前
lily完成签到 ,获得积分10
19秒前
abuall发布了新的文献求助10
20秒前
YJ888发布了新的文献求助10
20秒前
yaqin@9909发布了新的文献求助10
20秒前
研友_knggYn发布了新的文献求助10
20秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247443
求助须知:如何正确求助?哪些是违规求助? 2890794
关于积分的说明 8264627
捐赠科研通 2559134
什么是DOI,文献DOI怎么找? 1387790
科研通“疑难数据库(出版商)”最低求助积分说明 650653
邀请新用户注册赠送积分活动 627384