A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蜂窝杯子完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
情怀应助fzj采纳,获得10
1秒前
1秒前
1秒前
不停发布了新的文献求助10
1秒前
深情安青应助刘佳恬采纳,获得10
1秒前
Cui发布了新的文献求助10
2秒前
Icy完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
桀桀桀完成签到,获得积分10
3秒前
liming完成签到,获得积分20
3秒前
开朗若之发布了新的文献求助30
3秒前
yyyy完成签到,获得积分10
4秒前
科研通AI6应助下次一定采纳,获得10
4秒前
Peter完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
努力发文章应助yyy采纳,获得10
6秒前
6秒前
haha发布了新的文献求助10
6秒前
Pluminata发布了新的文献求助10
6秒前
6秒前
tianming完成签到,获得积分10
7秒前
踏实口红发布了新的文献求助30
7秒前
hhhheeee完成签到,获得积分10
7秒前
jz发布了新的文献求助10
7秒前
8秒前
嘟嘟拿铁完成签到,获得积分10
8秒前
8秒前
Nhyyy发布了新的文献求助10
8秒前
8秒前
隐形曼青应助socialbot采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667488
求助须知:如何正确求助?哪些是违规求助? 4886195
关于积分的说明 15120469
捐赠科研通 4826311
什么是DOI,文献DOI怎么找? 2583920
邀请新用户注册赠送积分活动 1537973
关于科研通互助平台的介绍 1496095