A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
黄1113发布了新的文献求助20
刚刚
1秒前
善学以致用应助哈米伯伯采纳,获得10
1秒前
田様应助Yi采纳,获得10
1秒前
2秒前
zsy11发布了新的文献求助10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
打打应助橘淮北采纳,获得10
3秒前
小情绪发布了新的文献求助10
3秒前
4秒前
桐桐应助xwhl采纳,获得10
4秒前
4秒前
5秒前
Cope完成签到 ,获得积分10
5秒前
5秒前
6秒前
Leonard发布了新的文献求助10
6秒前
虚幻初之发布了新的文献求助10
6秒前
科研通AI6.1应助zard采纳,获得10
6秒前
7秒前
11完成签到,获得积分20
7秒前
7秒前
飘逸烨华完成签到,获得积分10
7秒前
8秒前
潇洒的香水完成签到,获得积分10
8秒前
8秒前
LOFATIN完成签到,获得积分10
9秒前
思源应助干净利落采纳,获得10
10秒前
zsy11完成签到,获得积分20
10秒前
123456发布了新的文献求助10
10秒前
10秒前
10秒前
顺心囧完成签到 ,获得积分10
11秒前
yunyun关注了科研通微信公众号
11秒前
admirat发布了新的文献求助10
12秒前
科研通AI6.1应助温柔凌晴采纳,获得10
12秒前
xiaoxiao完成签到,获得积分10
13秒前
ciel完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784729
求助须知:如何正确求助?哪些是违规求助? 5683637
关于积分的说明 15465264
捐赠科研通 4913778
什么是DOI,文献DOI怎么找? 2644903
邀请新用户注册赠送积分活动 1592835
关于科研通互助平台的介绍 1547216