A deep learning process anomaly detection approach with representative latent features for low discriminative and insufficient abnormal data

异常检测 自编码 判别式 人工智能 计算机科学 模式识别(心理学) 过程(计算) 特征(语言学) 特征选择 异常(物理) 数据挖掘 机器学习 深度学习 物理 哲学 操作系统 语言学 凝聚态物理
作者
Yuan Gao,Xianhui Yin,Zhen He,Xueqing Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:176: 108936-108936 被引量:17
标识
DOI:10.1016/j.cie.2022.108936
摘要

Anomaly detection in industrial processes is vital for yield improvement and cost reduction. With the development of sensor system and information technology, industrial big data provide opportunities to detect the abnormalities of processes and raise alarms by using operating parameters. However, the slight deviations in operating parameters and the insufficient abnormal data may hinder the effectiveness of existing anomaly detection models. To cope with the above problems, a more effective process anomaly detection framework combining shallow feature fusion learning with unsupervised deep learning is constructed. Specifically, the extracted statistical features that can reflect the slight deviations of operating parameters and the original measured features are firstly concatenated to enrich the available information. Then, a combined feature selection method of SMOTE & Tomek Links and random forest is developed to further discover the abstract features closely relevant to the quality characteristics of finished products with imbalanced data. After that, an unsupervised anomaly detection method is developed, where only normal process data are available for training the stacked denoising autoencoder. The utilized autoencoder can alleviate the effect of imbalanced data as the reconstruction error would be larger when the abnormality occurs. Lastly, the anomaly discrimination criteria, which consist of the monitoring index construction and the threshold determination, are formulated to detect the state of the production process. The experimental results demonstrate that the proposed method can detect the abnormalities effectively and achieves better performance than other state-of-art anomaly detection methods in commutator spot welding of a practical motor manufacturing process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助救救我把采纳,获得10
刚刚
脑洞疼应助落寞灵安采纳,获得10
刚刚
1秒前
dx发布了新的文献求助10
1秒前
伶俐乌完成签到,获得积分10
1秒前
1秒前
李晴发布了新的文献求助10
1秒前
活泼越泽发布了新的文献求助10
2秒前
3秒前
GPTea发布了新的文献求助10
3秒前
五五发布了新的文献求助30
4秒前
威武的映真完成签到,获得积分20
4秒前
5秒前
充电宝应助VitoLi采纳,获得10
6秒前
小蘑菇应助正科采纳,获得10
6秒前
小马甲应助学术小白采纳,获得10
7秒前
财源滚滚完成签到,获得积分20
7秒前
宇宙法发布了新的文献求助10
7秒前
彩虹小马发布了新的文献求助20
8秒前
xx完成签到,获得积分10
8秒前
Hello应助Medy采纳,获得10
8秒前
李昕123发布了新的文献求助10
8秒前
jack完成签到,获得积分20
8秒前
8秒前
9秒前
qq完成签到,获得积分10
9秒前
9秒前
10秒前
22发布了新的文献求助10
10秒前
汉堡包应助AVA采纳,获得10
10秒前
最专业完成签到,获得积分10
10秒前
淡然的智宸给淡然的智宸的求助进行了留言
10秒前
10秒前
活泼越泽完成签到,获得积分10
11秒前
12秒前
狒狒完成签到,获得积分10
12秒前
慕青应助shilly采纳,获得10
13秒前
pluto应助shilly采纳,获得10
13秒前
深情安青应助shilly采纳,获得10
13秒前
NVLEKU发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674