Predicting Synergistic Drug Interaction with DNN and GAT

自编码 深度学习 人工智能 计算机科学 人工神经网络 模式识别(心理学) 图形 均方误差 机器学习 嵌入 数学 统计 理论计算机科学
作者
Nichakorn Numcharoenpinij,Teerasit Termsaithong,Phond Phunchongharn,Supanida Piyayotai
标识
DOI:10.1109/ickii55100.2022.9983579
摘要

Many complex diseases such as cancer cannot be effectively treated with one type of medication, giving rise to another treatment route that combines several drugs to achieve the desired effects. We developed deep learning models to predict a parameter that gauges such effects known as synergy score and specifically made use of relevant genetic and drug datasets. The expected outcome enables rapid identification of novel drug pairs with potential use in cancer therapy. The employed genetic datasets included gene expression, copy number variation, and somatic mutation. We applied different variations of autoencoders on these datasets, namely deep autoencoder, sparse autoencoder, and deep sparse autoencoder to reduce the dimensions and only retain what was deemed non-redundant. Alternatively, we filtered the data based on landmark gene names. As for the training drug datasets that contained associated synergy scores calculated empirically, we either used ECFP6 molecular fingerprint representations as an input for a deep neural network (DNN) or a molecular graph for a graph neural network (GNN) model. We set out to compare the performance of these two representations in appropriate deep learning models as well as determine how well each autoencoder method fared. Among different autoencoders, the best performing option was the sparse autoencoder for DNN and the deep autoencoder for GNN. After loading the processed genetic datasets into ECFP6-DNN and graph embedding-GNN model, we found that ECFP6-DNN performed better with a mean square error of 146.137, while graph embedding-GNN had a mean square error of 174.952.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljy完成签到,获得积分10
刚刚
zuotenghua123完成签到,获得积分10
1秒前
FashionBoy应助学习。。采纳,获得10
1秒前
1秒前
是柯基不是科技完成签到,获得积分10
1秒前
林林发布了新的文献求助10
1秒前
2秒前
剑指天涯完成签到,获得积分10
2秒前
kash想毕业发布了新的文献求助10
2秒前
研友_VZG7GZ应助Sean采纳,获得10
2秒前
陈阔完成签到 ,获得积分10
3秒前
刘畅发布了新的文献求助10
3秒前
3秒前
SciGPT应助huang采纳,获得10
3秒前
tangzanwayne完成签到 ,获得积分10
3秒前
3秒前
大模型应助乔安采纳,获得10
4秒前
TUTU发布了新的文献求助10
4秒前
小无完成签到,获得积分10
4秒前
myyyyy完成签到 ,获得积分10
4秒前
bkagyin应助cjr采纳,获得10
4秒前
汉堡包应助Lin17采纳,获得10
5秒前
打打应助幸运的靖柔采纳,获得10
6秒前
想飞的猪完成签到,获得积分10
6秒前
fantasy发布了新的文献求助10
6秒前
呆萌芙蓉完成签到 ,获得积分10
6秒前
Jennifer发布了新的文献求助10
6秒前
沐雨清风完成签到,获得积分10
7秒前
衫楠如画完成签到,获得积分10
7秒前
rover完成签到 ,获得积分10
7秒前
zyq完成签到,获得积分10
7秒前
gustavo发布了新的文献求助10
7秒前
8秒前
CipherSage应助核桃采纳,获得10
8秒前
JamesPei应助核桃采纳,获得10
8秒前
bkagyin应助核桃采纳,获得10
8秒前
汉堡包应助核桃采纳,获得10
8秒前
Jasper应助核桃采纳,获得10
8秒前
科研通AI5应助核桃采纳,获得10
8秒前
星辰大海应助核桃采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927847
求助须知:如何正确求助?哪些是违规求助? 4197159
关于积分的说明 13036921
捐赠科研通 3970018
什么是DOI,文献DOI怎么找? 2175613
邀请新用户注册赠送积分活动 1192676
关于科研通互助平台的介绍 1103447