Predicting Synergistic Drug Interaction with DNN and GAT

自编码 深度学习 人工智能 计算机科学 人工神经网络 模式识别(心理学) 图形 均方误差 机器学习 嵌入 数学 统计 理论计算机科学
作者
Nichakorn Numcharoenpinij,Teerasit Termsaithong,Phond Phunchongharn,Supanida Piyayotai
标识
DOI:10.1109/ickii55100.2022.9983579
摘要

Many complex diseases such as cancer cannot be effectively treated with one type of medication, giving rise to another treatment route that combines several drugs to achieve the desired effects. We developed deep learning models to predict a parameter that gauges such effects known as synergy score and specifically made use of relevant genetic and drug datasets. The expected outcome enables rapid identification of novel drug pairs with potential use in cancer therapy. The employed genetic datasets included gene expression, copy number variation, and somatic mutation. We applied different variations of autoencoders on these datasets, namely deep autoencoder, sparse autoencoder, and deep sparse autoencoder to reduce the dimensions and only retain what was deemed non-redundant. Alternatively, we filtered the data based on landmark gene names. As for the training drug datasets that contained associated synergy scores calculated empirically, we either used ECFP6 molecular fingerprint representations as an input for a deep neural network (DNN) or a molecular graph for a graph neural network (GNN) model. We set out to compare the performance of these two representations in appropriate deep learning models as well as determine how well each autoencoder method fared. Among different autoencoders, the best performing option was the sparse autoencoder for DNN and the deep autoencoder for GNN. After loading the processed genetic datasets into ECFP6-DNN and graph embedding-GNN model, we found that ECFP6-DNN performed better with a mean square error of 146.137, while graph embedding-GNN had a mean square error of 174.952.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
练习者发布了新的文献求助10
刚刚
刚刚
姚静怡发布了新的文献求助10
刚刚
丘比特应助李志福采纳,获得10
刚刚
顾矜应助小帆船采纳,获得10
刚刚
诚心的大炮完成签到,获得积分10
刚刚
菠萝发布了新的文献求助10
1秒前
田様应助你找谁哇采纳,获得10
1秒前
小小果给小小果的求助进行了留言
1秒前
xcydd发布了新的文献求助10
1秒前
彭于晏完成签到,获得积分0
1秒前
jjj关闭了jjj文献求助
2秒前
yimutian完成签到,获得积分10
2秒前
Iris完成签到,获得积分10
3秒前
3秒前
科研通AI6应助wait采纳,获得30
3秒前
3秒前
CHUNNUAN发布了新的文献求助30
3秒前
上官若男应助ljy采纳,获得10
3秒前
科研通AI6应助老猫采纳,获得10
3秒前
微微发布了新的文献求助10
4秒前
Jasper应助怡然灵珊采纳,获得10
4秒前
不黑不黑发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
明礼A完成签到,获得积分10
4秒前
车灵寒完成签到,获得积分10
4秒前
悦耳忘幽发布了新的文献求助10
5秒前
乐乐应助可爱的小paper采纳,获得10
6秒前
tywznba完成签到,获得积分10
6秒前
6秒前
青空完成签到 ,获得积分10
6秒前
小罗发布了新的文献求助10
7秒前
LIN发布了新的文献求助10
7秒前
等待的尔曼完成签到,获得积分10
8秒前
8秒前
8秒前
明天完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402696
求助须知:如何正确求助?哪些是违规求助? 4521255
关于积分的说明 14084933
捐赠科研通 4435268
什么是DOI,文献DOI怎么找? 2434625
邀请新用户注册赠送积分活动 1426781
关于科研通互助平台的介绍 1405516