One step multi-view spectral clustering via joint adaptive graph learning and matrix factorization

聚类分析 计算机科学 光谱聚类 相关聚类 图形 矩阵分解 聚类系数 CURE数据聚类算法 人工智能 数据挖掘 模式识别(心理学) 理论计算机科学 算法 量子力学 物理 特征向量
作者
Wenqi Yang,Yansu Wang,Chang Tang,Hengjian Tong,Ao Wei,Xia Wu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:524: 95-105 被引量:25
标识
DOI:10.1016/j.neucom.2022.12.023
摘要

Multi-view clustering based on graph learning has attracted extensive attention due to its simplicity and efficiency in recent years. However, there are still some issues in most of the existing graph-based multi-view clustering methods. First, most of those methods require post-processing such as K-means or spectral rotation to get the final discrete clustering result. Second, graph-based clustering methods perform clustering on a fixed input similarity graph, which could induce bad clustering results if the initial graph is with low quality. Third, these methods have high computation cost, which hinders them for dealing with large-scale data. In order to solve these problems, we propose a multi-view spectral clustering method via joint Adaptive Graph Learning and Matrix Factorization (AGLMF). In this method, to reduce computational cost, we adopt the anchor-based strategy to construct the input similarity graphs. Then, we use the l1-norm to learn a high quality similarity graph adaptively from original similarity graphs which can make the final graph more robust than original ones. In addition, AGLMF uses symmetric non-negative matrix factorization to learn the final clustering indicators which can show the final consistent clustering result directly. Finally, experimental results on multiple multi-view datasets validate the effectiveness of the proposed algorithm when compared with previous multi-view spectral clustering algorithms. The demo code of this work is publicly available at https://github.com/theywq/AGLMF.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助friend516采纳,获得10
刚刚
张琦发布了新的文献求助10
2秒前
mm完成签到,获得积分10
3秒前
阿甘完成签到,获得积分10
5秒前
李健应助zz采纳,获得10
5秒前
6秒前
6秒前
无花果应助英勇绮南采纳,获得10
8秒前
苦瓜女士很甜完成签到,获得积分10
10秒前
123完成签到,获得积分10
11秒前
12秒前
xianyu发布了新的文献求助10
12秒前
13秒前
小周完成签到,获得积分20
13秒前
优秀的小豆芽完成签到,获得积分10
15秒前
独狼完成签到 ,获得积分10
16秒前
17秒前
动漫大师发布了新的文献求助10
18秒前
白鹤卧雪发布了新的文献求助30
19秒前
打打应助洁净的代荷采纳,获得10
20秒前
orixero应助蔺子凡采纳,获得10
23秒前
monthli完成签到,获得积分10
24秒前
甘新儿完成签到 ,获得积分10
26秒前
华仔应助鳗鱼难胜采纳,获得10
27秒前
天天快乐应助企鹅采纳,获得10
29秒前
Kkk完成签到 ,获得积分10
31秒前
32秒前
JamesPei应助星川采纳,获得10
32秒前
飘逸访文完成签到,获得积分10
34秒前
小蘑菇应助小叶不吃香菜采纳,获得10
35秒前
香蕉觅云应助宁学者采纳,获得10
35秒前
Flex完成签到,获得积分10
35秒前
科目三应助haibing采纳,获得10
36秒前
水电费黑科技完成签到,获得积分10
37秒前
37秒前
今后应助练习者采纳,获得10
37秒前
虚拟的柠檬完成签到,获得积分10
37秒前
韩麒嘉完成签到,获得积分10
37秒前
37秒前
碧阳的尔风完成签到,获得积分10
38秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651973
求助须知:如何正确求助?哪些是违规求助? 3216162
关于积分的说明 9711019
捐赠科研通 2923965
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754160
科研通“疑难数据库(出版商)”最低求助积分说明 732987