SVFL: Efficient Secure Aggregation and Verification for Cross-Silo Federated Learning

计算机科学 正确性 可验证秘密共享 同态加密 计算 分布式计算 安全多方计算 协议(科学) 加密 计算机网络 算法 程序设计语言 医学 病理 集合(抽象数据类型) 替代医学
作者
Fucai Luo,Saif Al‐Kuwari,Yong Ding
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (1): 850-864 被引量:9
标识
DOI:10.1109/tmc.2022.3219485
摘要

Cross-silo federated learning (FL) allows organizations to collaboratively train machine learning (ML) models by sending their local gradients to a server for aggregation, without having to disclose their data. The main security issues in FL, that is, the privacy of the gradient and the trained model, and the correctness verification of the aggregated gradient, are gaining increasing attention from industry and academia. A popular approach to protect the privacy of the gradient and the trained model is for each client to mask their own gradients using additively homomorphic encryption (HE). However, this leads to significant computation and communication overheads. On the other hand, to verify the aggregated gradient, several verifiable FL protocols that require the server to provide a verifiable aggregated gradient were proposed. However, these verifiable FL protocols perform poorly in computation and communication. In this paper, we propose SVFL, an efficient protocol for cross-silo FL, that supports both secure gradient aggregation and verification. We first replace the heavy HE operations with a simple masking technique. Then, we design an efficient verification mechanism that achieves the correctness verification of the aggregated gradient. We evaluate the performance of SVFL and show, by complexity analysis and experimental evaluations, that its computation and communication overheads remain low even on large datasets, with a negligible accuracy loss (less than 1%). Furthermore, we conduct experimental comparisons between SVFL and other existing FL protocols to show that SVFL achieves significant efficiency improvements in both computation and communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵夏云完成签到,获得积分10
1秒前
光_sun完成签到,获得积分10
1秒前
1秒前
2秒前
1111完成签到,获得积分10
3秒前
yousen完成签到,获得积分20
3秒前
念所三旬完成签到,获得积分10
3秒前
Akim应助zhuww采纳,获得10
3秒前
马里奥完成签到,获得积分10
3秒前
bodhi完成签到,获得积分10
4秒前
桐桐应助威小廉采纳,获得10
4秒前
心灵美凝竹完成签到 ,获得积分10
4秒前
兴起为你完成签到,获得积分20
5秒前
很酷的妞子完成签到 ,获得积分10
5秒前
abcdefg完成签到,获得积分10
6秒前
优秀的傲南完成签到,获得积分10
7秒前
柚子完成签到,获得积分10
7秒前
qi完成签到,获得积分10
7秒前
8秒前
一只小鲨鱼完成签到,获得积分10
9秒前
Junewill完成签到,获得积分10
9秒前
领导范儿应助马喽打工仔采纳,获得10
9秒前
10秒前
10秒前
Wind0240完成签到,获得积分10
11秒前
alex完成签到,获得积分10
11秒前
ChenChen完成签到,获得积分20
11秒前
养乐多完成签到,获得积分10
11秒前
12秒前
12秒前
淡定自中完成签到 ,获得积分10
12秒前
生动初蓝完成签到,获得积分10
12秒前
胡杨树2006完成签到,获得积分10
13秒前
哈基米德应助dream采纳,获得10
13秒前
oneonlycrown完成签到,获得积分10
14秒前
14秒前
Lyw发布了新的文献求助10
14秒前
lidd完成签到,获得积分10
14秒前
快乐的麦片完成签到 ,获得积分10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044