清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SVFL: Efficient Secure Aggregation and Verification for Cross-Silo Federated Learning

计算机科学 正确性 可验证秘密共享 同态加密 计算 分布式计算 安全多方计算 协议(科学) 加密 计算机网络 算法 程序设计语言 医学 病理 集合(抽象数据类型) 替代医学
作者
Fucai Luo,Saif Al‐Kuwari,Yong Ding
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 850-864 被引量:9
标识
DOI:10.1109/tmc.2022.3219485
摘要

Cross-silo federated learning (FL) allows organizations to collaboratively train machine learning (ML) models by sending their local gradients to a server for aggregation, without having to disclose their data. The main security issues in FL, that is, the privacy of the gradient and the trained model, and the correctness verification of the aggregated gradient, are gaining increasing attention from industry and academia. A popular approach to protect the privacy of the gradient and the trained model is for each client to mask their own gradients using additively homomorphic encryption (HE). However, this leads to significant computation and communication overheads. On the other hand, to verify the aggregated gradient, several verifiable FL protocols that require the server to provide a verifiable aggregated gradient were proposed. However, these verifiable FL protocols perform poorly in computation and communication. In this paper, we propose SVFL, an efficient protocol for cross-silo FL, that supports both secure gradient aggregation and verification. We first replace the heavy HE operations with a simple masking technique. Then, we design an efficient verification mechanism that achieves the correctness verification of the aggregated gradient. We evaluate the performance of SVFL and show, by complexity analysis and experimental evaluations, that its computation and communication overheads remain low even on large datasets, with a negligible accuracy loss (less than 1%). Furthermore, we conduct experimental comparisons between SVFL and other existing FL protocols to show that SVFL achieves significant efficiency improvements in both computation and communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
番茄酱完成签到 ,获得积分10
16秒前
随心所欲完成签到 ,获得积分10
30秒前
明亮的小蘑菇完成签到 ,获得积分10
38秒前
zl完成签到 ,获得积分10
55秒前
LPPQBB应助科研通管家采纳,获得200
1分钟前
乐观无心完成签到,获得积分10
1分钟前
范冰冰完成签到,获得积分10
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
研友_ZGR70n完成签到 ,获得积分10
2分钟前
直率的笑翠完成签到 ,获得积分10
2分钟前
2分钟前
zznzn发布了新的文献求助10
3分钟前
3分钟前
充电宝应助zznzn采纳,获得10
3分钟前
1250241652完成签到,获得积分10
3分钟前
共享精神应助1250241652采纳,获得10
3分钟前
魁梧的衫完成签到 ,获得积分10
3分钟前
Ji完成签到,获得积分10
4分钟前
称心的火车完成签到 ,获得积分10
4分钟前
常有李完成签到,获得积分10
4分钟前
5分钟前
5分钟前
小李医生发布了新的文献求助10
5分钟前
5分钟前
锦慜完成签到 ,获得积分10
5分钟前
Criminology34应助kyyp采纳,获得10
5分钟前
5分钟前
wodetaiyangLLL完成签到 ,获得积分10
5分钟前
5分钟前
Criminology34举报adong求助涉嫌违规
5分钟前
6分钟前
6分钟前
juan完成签到 ,获得积分0
6分钟前
6分钟前
1250241652发布了新的文献求助10
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
7分钟前
小奋青完成签到 ,获得积分10
8分钟前
8分钟前
MathFun发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324554
求助须知:如何正确求助?哪些是违规求助? 4465370
关于积分的说明 13894437
捐赠科研通 4357382
什么是DOI,文献DOI怎么找? 2393359
邀请新用户注册赠送积分活动 1386852
关于科研通互助平台的介绍 1357355