SVFL: Efficient Secure Aggregation and Verification for Cross-Silo Federated Learning

计算机科学 正确性 可验证秘密共享 同态加密 计算 分布式计算 安全多方计算 协议(科学) 加密 计算机网络 算法 程序设计语言 医学 病理 集合(抽象数据类型) 替代医学
作者
Fucai Luo,Saif Al-Kuwari,Yong Ding
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 850-864 被引量:5
标识
DOI:10.1109/tmc.2022.3219485
摘要

Cross-silo federated learning (FL) allows organizations to collaboratively train machine learning (ML) models by sending their local gradients to a server for aggregation, without having to disclose their data. The main security issues in FL, that is, the privacy of the gradient and the trained model, and the correctness verification of the aggregated gradient, are gaining increasing attention from industry and academia. A popular approach to protect the privacy of the gradient and the trained model is for each client to mask their own gradients using additively homomorphic encryption (HE). However, this leads to significant computation and communication overheads. On the other hand, to verify the aggregated gradient, several verifiable FL protocols that require the server to provide a verifiable aggregated gradient were proposed. However, these verifiable FL protocols perform poorly in computation and communication. In this paper, we propose SVFL, an efficient protocol for cross-silo FL, that supports both secure gradient aggregation and verification. We first replace the heavy HE operations with a simple masking technique. Then, we design an efficient verification mechanism that achieves the correctness verification of the aggregated gradient. We evaluate the performance of SVFL and show, by complexity analysis and experimental evaluations, that its computation and communication overheads remain low even on large datasets, with a negligible accuracy loss (less than 1%). Furthermore, we conduct experimental comparisons between SVFL and other existing FL protocols to show that SVFL achieves significant efficiency improvements in both computation and communication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝紫雪发布了新的文献求助10
刚刚
1秒前
就是躺完成签到 ,获得积分10
1秒前
bkagyin应助pfliu采纳,获得10
1秒前
Nekozzzz发布了新的文献求助10
1秒前
2秒前
搜集达人应助rou采纳,获得10
2秒前
无心的小兔子完成签到,获得积分10
3秒前
无花果应助闲看花季采纳,获得10
4秒前
三三得九发布了新的文献求助10
5秒前
5秒前
所所应助健忘的初翠采纳,获得10
5秒前
结实的啤酒完成签到 ,获得积分10
6秒前
6秒前
kiminonawa发布了新的文献求助10
7秒前
wanghaowen完成签到,获得积分10
7秒前
8秒前
Ting发布了新的文献求助10
8秒前
niu完成签到 ,获得积分10
8秒前
优雅沛文完成签到 ,获得积分10
9秒前
10秒前
lzdx发布了新的文献求助10
11秒前
12秒前
谭显芝发布了新的文献求助10
12秒前
12秒前
14秒前
彭于晏应助大气建辉采纳,获得10
15秒前
16秒前
16秒前
Owen应助明柯采纳,获得30
17秒前
lyz发布了新的文献求助10
18秒前
18秒前
旺仔完成签到,获得积分10
18秒前
科研通AI2S应助朝阳采纳,获得10
19秒前
19秒前
20秒前
21秒前
陈龙发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706