Inverse spinel cobalt manganese oxide nanosphere materials as an electrode for high-performance asymmetric supercapacitor

超级电容器 氧化钴 尖晶石 材料科学 氧化锰 氧化物 化学工程 纳米技术 电极 电化学 化学 物理化学 冶金 工程类
作者
T. Shahanas,Johnbosco Yesuraj,G. Harichandran,Muthuraaman Bhagavathiachari,Ki‐Bum Kim
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:933: 167645-167645 被引量:13
标识
DOI:10.1016/j.jallcom.2022.167645
摘要

In energy storage devices, it is critical to further develop spinel structured functional materials with rich redox-active sites and high theoretical capacitance. In this study, the nanosphere-shaped Cobalt Manganese Oxide inverse spinel structure was prepared by polyvinylpyrrolidone-assisted hydrothermal technique followed by calcination at 300 °C. Benefitting from the small nanosphere architecture, the Cobalt Manganese Oxide exhibits a high specific surface area to offer more redox-active sites and has a highly porous nature to shorten the ion movement pathway. The obtained Cobalt Manganese Oxide nanospheres exhibit a battery-like energy storage mechanism with a specific capacity (580 C g−1 at 5 mV s−1), high rate capability, and long-term cyclic stability performance (91.2% at 100 mV s−1 for 5000 cycles) in 6 M KOH electrolyte. The fabricated asymmetric supercapacitor device displays a high energy density of 29.1 Wh kg−1 at a power density of 320 W kg−1, and a power density of 3840 W kg−1 at an energy density of 4.4 Wh kg−1 with cyclic stability of 96.5% after 10,000 galvanostatic charge/discharge (GCD) cycles. The electronic structural properties explain density functional theory (DFT).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
菠萝吹雪应助科研通管家采纳,获得30
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
西内!卡Q因完成签到,获得积分10
2秒前
我是125应助www采纳,获得10
2秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
2秒前
Zzzzzzzzzzz发布了新的文献求助10
2秒前
长情若魔发布了新的文献求助10
2秒前
酷酷酷完成签到,获得积分10
3秒前
3秒前
BaekHyun发布了新的文献求助10
4秒前
xuex1发布了新的文献求助10
4秒前
孙皓然完成签到 ,获得积分10
5秒前
7秒前
7秒前
9秒前
逐风给逐风的求助进行了留言
10秒前
科研通AI5应助灌饼采纳,获得30
10秒前
Owen应助Zzzzzzzzzzz采纳,获得10
11秒前
12秒前
13秒前
巫马秋寒应助笑点低可乐采纳,获得10
13秒前
xuex1完成签到,获得积分10
13秒前
情怀应助阳光的雁山采纳,获得10
15秒前
斯文败类应助jy采纳,获得10
15秒前
15秒前
日月轮回发布了新的文献求助10
16秒前
36456657应助木香采纳,获得10
17秒前
无花果应助ns采纳,获得30
17秒前
刘铭晨完成签到,获得积分10
17秒前
18秒前
YY发布了新的文献求助10
18秒前
Rrr发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808