胶质增生
神经科学
神经炎症
医学
老年斑
小胶质细胞
认知功能衰退
病态的
神经保护
病理
心理学
阿尔茨海默病
疾病
痴呆
炎症
内科学
作者
Mandy S. J. Kater,Christiaan F. M. Huffels,Takuya Oshima,Niek S. Renckens,Jinte Middeldorp,Erik Boddeke,August B. Smit,Bart J. L. Eggen,Elly M. Hol,Mark H. G. Verheijen
标识
DOI:10.1016/j.bbi.2022.10.009
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, the neuropathological formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles. The best cellular correlates of the early cognitive deficits in AD patients are synapse loss and gliosis. In particular, it is unclear whether the activation of microglia (microgliosis) has a neuroprotective or pathological role early in AD. Here we report that microgliosis is an early mediator of synaptic dysfunction and cognitive impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We found that the appearance of microgliosis, synaptic dysfunction and behavioral impairment coincided with increased soluble Aβ42 levels, and occurred well before the presence of Aβ plaques. Inhibition of microglial activity by treatment with minocycline (MC) reduced gliosis, synaptic deficits and cognitive impairments at early pathological stages and was most effective when provided preventive, i.e., before the onset of microgliosis. Interestingly, soluble Aβ levels or Aβ plaques deposition were not affected by preventive MC treatment at an early pathological stage (4 months) whereas these were reduced upon treatment at a later stage (6 months). In conclusion, this study demonstrates the importance of early-stage prevention of microgliosis on the development of cognitive impairment in APP/PS1 mice, which might be clinically relevant in preventing memory loss and delaying AD pathogenesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI