神经科学
癫痫
神经调节
抑制性突触后电位
帕尔瓦布明
颞叶
红藻氨酸受体
海马体
海马结构
电池类型
背景(考古学)
兴奋性突触后电位
中间神经元
医学
生物
细胞
中枢神经系统
谷氨酸受体
内科学
古生物学
遗传学
受体
AMPA受体
作者
Keith R. Murphy,Jordan S. Farrell,Juan L. Gomez,Quintin G. Stedman,Ningrui Li,Steven A. Leung,Cameron H. Good,Zhihai Qiu,Kamyar Firouzi,Kim Butts Pauly,Butrus Pierre T. Khuri-Yakub,Michael Michaelides,Ivan Soltesz,Luis de Lecea
标识
DOI:10.1073/pnas.2206828119
摘要
Focused ultrasound (FUS) is a powerful tool for noninvasive modulation of deep brain activity with promising therapeutic potential for refractory epilepsy; however, tools for examining FUS effects on specific cell types within the deep brain do not yet exist. Consequently, how cell types within heterogeneous networks can be modulated and whether parameters can be identified to bias these networks in the context of complex behaviors remains unknown. To address this, we developed a fiber Photometry Coupled focused Ultrasound System (PhoCUS) for simultaneously monitoring FUS effects on neural activity of subcortical genetically targeted cell types in freely behaving animals. We identified a parameter set that selectively increases activity of parvalbumin interneurons while suppressing excitatory neurons in the hippocampus. A net inhibitory effect localized to the hippocampus was further confirmed through whole brain metabolic imaging. Finally, these inhibitory selective parameters achieved significant spike suppression in the kainate model of chronic temporal lobe epilepsy, opening the door for future noninvasive therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI