MWO2KG and Echidna: Constructing and exploring knowledge graphs from maintenance data

计算机科学 知识图 资产(计算机安全) 行话 图形 数据科学 过程(计算) 领域(数学) 情报检索 资源(消歧) 程序设计语言 理论计算机科学 哲学 语言学 计算机安全 数学 纯数学 计算机网络
作者
Michael Stewart,Melinda Hodkiewicz,Wei Liu,Tim French
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:238 (5): 920-932 被引量:8
标识
DOI:10.1177/1748006x221131128
摘要

Unstructured technical texts are a rich resource of engineering knowledge underutilised for data analysis. Maintenance work orders (MWO), for example, capture valuable information to inform what work was done on an asset and why. Data in MWO short text fields is unstructured, terse and jargon-rich, complicating the ability of both humans and machines to read it. Our challenge is to efficiently extract technical information from the MWO short text field and combine it with data in structured fields such as dates, functional location, make and model of the asset. In this paper we present a technical language processing-based solution for this problem. Echidna is an intuitive query-enabling interface that visualises historic asset data in the form of a knowledge graph. This knowledge graph is produced by MWO2KG, which uses deep learning supported by annotated training data to automatically construct knowledge graphs from unstructured technical text combined with data from structured fields. The tools are tested on maintenance work order and delay accounting data provided by industry partners. These tools provide reliability engineers with an efficient way to find information in historic asset data for failure modes and effects analysis, maintenance strategy validation and process improvement work. Source code for both tools is available on GitHub under the Apache 2.0 License.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sssssssssss完成签到,获得积分10
1秒前
8秒前
tienslord完成签到,获得积分10
11秒前
11秒前
Hello应助J12138采纳,获得10
11秒前
12秒前
懒羊羊发布了新的文献求助10
13秒前
15秒前
15秒前
wqy发布了新的文献求助10
17秒前
19秒前
杜玛完成签到,获得积分20
22秒前
飘逸问兰发布了新的文献求助100
24秒前
LDDD完成签到,获得积分10
26秒前
26秒前
wang发布了新的文献求助10
28秒前
牟宸锐发布了新的文献求助10
29秒前
椰树发布了新的文献求助10
29秒前
我是老大应助Kang采纳,获得10
31秒前
Youdge完成签到,获得积分10
32秒前
35秒前
充电宝应助Laneyliu采纳,获得10
36秒前
慕青应助温医第一打野采纳,获得10
37秒前
小甜发布了新的文献求助10
38秒前
39秒前
18166992885完成签到 ,获得积分10
40秒前
42秒前
中世纪托尼完成签到,获得积分10
42秒前
米娅发布了新的文献求助20
45秒前
kele发布了新的文献求助10
45秒前
46秒前
hh发布了新的文献求助10
47秒前
wang完成签到,获得积分10
47秒前
222完成签到,获得积分10
47秒前
49秒前
50秒前
SunKnight完成签到,获得积分20
50秒前
小会发布了新的文献求助10
52秒前
53秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468