Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 能源消耗 粒度 碳足迹 消费(社会学) 能量(信号处理) 平均绝对百分比误差 人工神经网络 工程类 统计 生物 操作系统 电气工程 社会学 温室气体 社会科学 数学 生态学
作者
Naman Bhoj,Robin Singh Bhadoria
出处
期刊:Telematics and Informatics [Elsevier]
卷期号:75: 101907-101907 被引量:14
标识
DOI:10.1016/j.tele.2022.101907
摘要

The rapid increase in technological development has led to the rise in usage of IoT devices for monitoring Electrical Energy Consumption. As countries around the world are committing to United Nations Sustainable Development Goals, reducing carbon footprint has become an eminent priority for policymakers, businesses, and the public. Clean and green energy in the form of electricity has emerged as an alternative to fossil fuel. Since electricity is scarce and in high demand it has become an important problem for identifying robust energy consumption predictive models for powered smart residential homes. In our research we compare SVR, LSTM, GRU, CNN-LSTM, CNN-GRU models for predictive energy consumption data of smart residential homes. Empirical results indicate that with increase in the amount of data the performance of machine learning SVR degraded significantly more as compared to Deep Learning Techniques, which provides conclusive evidence that machine learning techniques are not suitable for the task. Whereas, our proposed CNN-GRU architecture performs 17.4% better in terms of Mean Absolute Error (MAE) with a value of 0.151 compared to the LSTM which has a value of MAE equals to 0.183 for days granularity of data and is only bested by the LSTM by 0.4% in terms of MAE for hour granularity data, where the CNN-GRU has MAE of 0.229 and LSTM achieves the MAE of 0.228. Additionally, CNN-LSTM and LSTM architectures were found effective in identifying outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知有完成签到 ,获得积分10
1秒前
1秒前
2秒前
coffeecoffee发布了新的文献求助10
3秒前
呵呵完成签到,获得积分10
3秒前
majf发布了新的文献求助50
3秒前
4秒前
4秒前
万能图书馆应助林声采纳,获得10
4秒前
王泰一发布了新的文献求助30
5秒前
zhengzengpeng完成签到,获得积分20
5秒前
5秒前
小蘑菇应助wzx采纳,获得10
5秒前
木木完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
5秒前
Ava应助小丁采纳,获得10
5秒前
儒雅的寄凡完成签到,获得积分10
6秒前
6秒前
大气大开关注了科研通微信公众号
7秒前
7秒前
赘婿应助猫小咪采纳,获得10
7秒前
lx发布了新的文献求助10
7秒前
蚊蚊爱读书应助SY采纳,获得10
7秒前
小新应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
沉默的香氛完成签到 ,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
max发布了新的文献求助10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
ding应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483532
求助须知:如何正确求助?哪些是违规求助? 4584237
关于积分的说明 14395715
捐赠科研通 4513936
什么是DOI,文献DOI怎么找? 2473733
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433177