Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 能源消耗 粒度 碳足迹 消费(社会学) 能量(信号处理) 平均绝对百分比误差 人工神经网络 工程类 统计 生物 操作系统 电气工程 社会学 温室气体 社会科学 数学 生态学
作者
Naman Bhoj,Robin Singh Bhadoria
出处
期刊:Telematics and Informatics [Elsevier]
卷期号:75: 101907-101907 被引量:14
标识
DOI:10.1016/j.tele.2022.101907
摘要

The rapid increase in technological development has led to the rise in usage of IoT devices for monitoring Electrical Energy Consumption. As countries around the world are committing to United Nations Sustainable Development Goals, reducing carbon footprint has become an eminent priority for policymakers, businesses, and the public. Clean and green energy in the form of electricity has emerged as an alternative to fossil fuel. Since electricity is scarce and in high demand it has become an important problem for identifying robust energy consumption predictive models for powered smart residential homes. In our research we compare SVR, LSTM, GRU, CNN-LSTM, CNN-GRU models for predictive energy consumption data of smart residential homes. Empirical results indicate that with increase in the amount of data the performance of machine learning SVR degraded significantly more as compared to Deep Learning Techniques, which provides conclusive evidence that machine learning techniques are not suitable for the task. Whereas, our proposed CNN-GRU architecture performs 17.4% better in terms of Mean Absolute Error (MAE) with a value of 0.151 compared to the LSTM which has a value of MAE equals to 0.183 for days granularity of data and is only bested by the LSTM by 0.4% in terms of MAE for hour granularity data, where the CNN-GRU has MAE of 0.229 and LSTM achieves the MAE of 0.228. Additionally, CNN-LSTM and LSTM architectures were found effective in identifying outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助雪白亦旋采纳,获得10
刚刚
qz发布了新的文献求助10
刚刚
llll完成签到,获得积分10
1秒前
SHAN_JIN发布了新的文献求助150
1秒前
852应助高大厉采纳,获得30
1秒前
1秒前
1秒前
1秒前
2秒前
未闻花名完成签到,获得积分10
2秒前
小武wwwww完成签到 ,获得积分10
2秒前
2秒前
田様应助年轻小之采纳,获得10
2秒前
3秒前
3秒前
科研通AI6应助天下迎春采纳,获得10
3秒前
4秒前
隐形曼青应助ytj采纳,获得100
5秒前
5秒前
5秒前
5秒前
仙宝头完成签到,获得积分10
5秒前
彭于晏应助刘凤莲采纳,获得10
5秒前
HX发布了新的文献求助10
7秒前
7秒前
ShengxK发布了新的文献求助10
8秒前
8秒前
chen发布了新的文献求助10
8秒前
梨花月完成签到,获得积分10
8秒前
hx完成签到 ,获得积分10
9秒前
吴彦祖发布了新的文献求助20
10秒前
Wu发布了新的文献求助10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
zcm应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
快乐的怀亦完成签到,获得积分10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489