Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 能源消耗 粒度 碳足迹 消费(社会学) 能量(信号处理) 平均绝对百分比误差 人工神经网络 工程类 统计 生物 操作系统 电气工程 社会学 温室气体 社会科学 数学 生态学
作者
Naman Bhoj,Robin Singh Bhadoria
出处
期刊:Telematics and Informatics [Elsevier]
卷期号:75: 101907-101907 被引量:14
标识
DOI:10.1016/j.tele.2022.101907
摘要

The rapid increase in technological development has led to the rise in usage of IoT devices for monitoring Electrical Energy Consumption. As countries around the world are committing to United Nations Sustainable Development Goals, reducing carbon footprint has become an eminent priority for policymakers, businesses, and the public. Clean and green energy in the form of electricity has emerged as an alternative to fossil fuel. Since electricity is scarce and in high demand it has become an important problem for identifying robust energy consumption predictive models for powered smart residential homes. In our research we compare SVR, LSTM, GRU, CNN-LSTM, CNN-GRU models for predictive energy consumption data of smart residential homes. Empirical results indicate that with increase in the amount of data the performance of machine learning SVR degraded significantly more as compared to Deep Learning Techniques, which provides conclusive evidence that machine learning techniques are not suitable for the task. Whereas, our proposed CNN-GRU architecture performs 17.4% better in terms of Mean Absolute Error (MAE) with a value of 0.151 compared to the LSTM which has a value of MAE equals to 0.183 for days granularity of data and is only bested by the LSTM by 0.4% in terms of MAE for hour granularity data, where the CNN-GRU has MAE of 0.229 and LSTM achieves the MAE of 0.228. Additionally, CNN-LSTM and LSTM architectures were found effective in identifying outliers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助唐文硕采纳,获得10
1秒前
yellger完成签到 ,获得积分20
1秒前
研究生发布了新的文献求助10
2秒前
阿布都艾则孜完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
wzt发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
FashionBoy应助风清扬采纳,获得30
4秒前
qingmoheng应助婷婷采纳,获得10
4秒前
4秒前
淡淡土豆应助liu采纳,获得10
5秒前
今后应助賒雾采纳,获得10
5秒前
戴戴完成签到,获得积分10
5秒前
大模型应助星黛露采纳,获得10
5秒前
6秒前
科研通AI6应助lisier采纳,获得10
7秒前
辛勤的宛完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
范东乐完成签到,获得积分20
10秒前
老实棒棒糖完成签到,获得积分10
10秒前
依梦完成签到,获得积分10
10秒前
脑洞疼应助cm_1231采纳,获得10
11秒前
12完成签到,获得积分20
11秒前
鞥翁发布了新的文献求助10
12秒前
一叶知秋应助努力采纳,获得10
12秒前
yellger关注了科研通微信公众号
12秒前
tina发布了新的文献求助10
12秒前
虚幻百川应助xiye采纳,获得10
12秒前
科研通AI6应助琥珀采纳,获得10
12秒前
halo发布了新的文献求助10
12秒前
wzt发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521185
求助须知:如何正确求助?哪些是违规求助? 4612661
关于积分的说明 14534683
捐赠科研通 4550154
什么是DOI,文献DOI怎么找? 2493511
邀请新用户注册赠送积分活动 1474660
关于科研通互助平台的介绍 1446156