Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 能源消耗 粒度 碳足迹 消费(社会学) 能量(信号处理) 平均绝对百分比误差 人工神经网络 工程类 统计 生物 操作系统 电气工程 社会学 温室气体 社会科学 数学 生态学
作者
Naman Bhoj,Robin Singh Bhadoria
出处
期刊:Telematics and Informatics [Elsevier]
卷期号:75: 101907-101907 被引量:14
标识
DOI:10.1016/j.tele.2022.101907
摘要

The rapid increase in technological development has led to the rise in usage of IoT devices for monitoring Electrical Energy Consumption. As countries around the world are committing to United Nations Sustainable Development Goals, reducing carbon footprint has become an eminent priority for policymakers, businesses, and the public. Clean and green energy in the form of electricity has emerged as an alternative to fossil fuel. Since electricity is scarce and in high demand it has become an important problem for identifying robust energy consumption predictive models for powered smart residential homes. In our research we compare SVR, LSTM, GRU, CNN-LSTM, CNN-GRU models for predictive energy consumption data of smart residential homes. Empirical results indicate that with increase in the amount of data the performance of machine learning SVR degraded significantly more as compared to Deep Learning Techniques, which provides conclusive evidence that machine learning techniques are not suitable for the task. Whereas, our proposed CNN-GRU architecture performs 17.4% better in terms of Mean Absolute Error (MAE) with a value of 0.151 compared to the LSTM which has a value of MAE equals to 0.183 for days granularity of data and is only bested by the LSTM by 0.4% in terms of MAE for hour granularity data, where the CNN-GRU has MAE of 0.229 and LSTM achieves the MAE of 0.228. Additionally, CNN-LSTM and LSTM architectures were found effective in identifying outliers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真谷雪完成签到,获得积分10
刚刚
高兴的海豚完成签到,获得积分10
1秒前
ecchaos发布了新的文献求助10
2秒前
专注淇完成签到,获得积分10
2秒前
fuzh发布了新的文献求助10
3秒前
3秒前
嗯嗯完成签到 ,获得积分10
5秒前
6秒前
科研通AI6应助蓝天采纳,获得10
6秒前
7秒前
香蕉觅云应助阿桔采纳,获得10
7秒前
ww发布了新的文献求助10
8秒前
8秒前
ok发布了新的文献求助10
9秒前
zar发布了新的文献求助20
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
阳光台灯关注了科研通微信公众号
13秒前
云朵完成签到,获得积分10
14秒前
土豆发布了新的文献求助10
14秒前
任性糖豆发布了新的文献求助10
15秒前
Sere发布了新的文献求助10
16秒前
March发布了新的文献求助10
16秒前
16秒前
花骨头发布了新的文献求助10
17秒前
summer夏完成签到,获得积分10
18秒前
穆仰发布了新的文献求助10
18秒前
Y_Jfeng完成签到,获得积分10
18秒前
18秒前
乐乐应助Shirley采纳,获得30
18秒前
19秒前
19秒前
单耳兔完成签到 ,获得积分10
20秒前
科研通AI6应助彪壮的忘幽采纳,获得10
20秒前
思源应助洒脱采纳,获得10
20秒前
Affiliation完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589017
求助须知:如何正确求助?哪些是违规求助? 4671762
关于积分的说明 14789530
捐赠科研通 4627020
什么是DOI,文献DOI怎么找? 2532031
邀请新用户注册赠送积分活动 1500644
关于科研通互助平台的介绍 1468373