Time-series based prediction for energy consumption of smart home data using hybrid convolution-recurrent neural network

计算机科学 人工智能 深度学习 卷积神经网络 机器学习 能源消耗 粒度 碳足迹 消费(社会学) 能量(信号处理) 平均绝对百分比误差 人工神经网络 工程类 统计 生物 操作系统 电气工程 社会学 温室气体 社会科学 数学 生态学
作者
Naman Bhoj,Robin Singh Bhadoria
出处
期刊:Telematics and Informatics [Elsevier BV]
卷期号:75: 101907-101907 被引量:14
标识
DOI:10.1016/j.tele.2022.101907
摘要

The rapid increase in technological development has led to the rise in usage of IoT devices for monitoring Electrical Energy Consumption. As countries around the world are committing to United Nations Sustainable Development Goals, reducing carbon footprint has become an eminent priority for policymakers, businesses, and the public. Clean and green energy in the form of electricity has emerged as an alternative to fossil fuel. Since electricity is scarce and in high demand it has become an important problem for identifying robust energy consumption predictive models for powered smart residential homes. In our research we compare SVR, LSTM, GRU, CNN-LSTM, CNN-GRU models for predictive energy consumption data of smart residential homes. Empirical results indicate that with increase in the amount of data the performance of machine learning SVR degraded significantly more as compared to Deep Learning Techniques, which provides conclusive evidence that machine learning techniques are not suitable for the task. Whereas, our proposed CNN-GRU architecture performs 17.4% better in terms of Mean Absolute Error (MAE) with a value of 0.151 compared to the LSTM which has a value of MAE equals to 0.183 for days granularity of data and is only bested by the LSTM by 0.4% in terms of MAE for hour granularity data, where the CNN-GRU has MAE of 0.229 and LSTM achieves the MAE of 0.228. Additionally, CNN-LSTM and LSTM architectures were found effective in identifying outliers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
略略略发布了新的文献求助10
1秒前
想吃冰激凌么完成签到 ,获得积分20
1秒前
1秒前
2秒前
nako7575完成签到,获得积分10
3秒前
4秒前
4秒前
bkagyin应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
ZZQ完成签到,获得积分10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
爆米花应助GT采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
pokexuejiao发布了新的文献求助20
6秒前
YooLoo完成签到,获得积分10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
哈哈哈哈应助科研通管家采纳,获得10
6秒前
6秒前
哈哈哈哈应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
现代的擎苍完成签到,获得积分10
7秒前
好叭发布了新的文献求助10
8秒前
9秒前
仙女蛋蛋打怪兽完成签到,获得积分10
10秒前
10秒前
叶文轩完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425