ERP Staff versus AI recruitment with employment real-time big data

互联网 大数据 人工智能 计算机科学 集合(抽象数据类型) 人力资源管理 人力资源 机器学习 知识管理 数据科学 自然语言处理 万维网 数据挖掘 管理 经济 程序设计语言
作者
Kenneth David Strang,Zhaohao Sun
出处
期刊:Discover Artificial Intelligence [Springer Nature]
卷期号:2 (1) 被引量:5
标识
DOI:10.1007/s44163-022-00037-1
摘要

Abstract The purpose of this study was to evaluate the effectiveness of using natural language processing (NLP) artificial intelligence (AI) in enterprise resources planning (ERP) to identify specialized job candidates in real-time big data—globally across the internet. The central problem was that companies using traditional methods for recruiting remote specialists were missing good candidates because the skilled employees may not be looking for a job yet they may be receptive to an offer. The auxiliary problem was too much data on the internet for human resources management (HRM) staff to make sense of to find the best-fitting candidate. Thus, the research question was: could NLP AI identify good candidates for ERP remote specialist jobs using internet real-time big data? Job criteria were developed using machine learning to identify key skills from existing staff in a case study company. The skills were transformed into ERP remote specialists hiring criteria. The NLP AI software was activated to find the best candidate. The HRM staff at the case study company evaluated the effectiveness of the candidate selected by the NLP AI. The case study company set 70% as the acceptable mean evaluation score. ANOVA was used to determine if HRM staff agreed about their evaluation scores. A Z-test was used to determine if the NLP AI was faster than the mean time needed for HRM to select ERP candidates. The results were that the NLP AI outperformed the humans by a factor of almost 8 h. All HRM staff agreed that the NLP AI was effective in selecting a candidate to match the hiring criteria. The proposed approach might facilitate the research and development of big data, data analytics, NLP AI, and HRM process improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助要减肥的访旋采纳,获得10
刚刚
1秒前
jmx234完成签到,获得积分10
1秒前
3秒前
genhao7发布了新的文献求助10
3秒前
WIL发布了新的文献求助10
4秒前
健忘四娘完成签到 ,获得积分10
4秒前
5秒前
科研通AI2S应助lhxing采纳,获得10
6秒前
薛之谦完成签到,获得积分10
6秒前
8秒前
香蕉觅云应助znsmaqwdy采纳,获得10
8秒前
温暖宛筠完成签到,获得积分10
8秒前
领导范儿应助楼藏鸟采纳,获得10
8秒前
光亮向露完成签到,获得积分10
9秒前
兜兜揣满糖完成签到 ,获得积分10
10秒前
虫二完成签到,获得积分10
10秒前
小鱼儿发布了新的文献求助10
11秒前
12秒前
丘比特应助科研通管家采纳,获得30
12秒前
李健应助科研通管家采纳,获得10
12秒前
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
山复尔尔应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
lsclsclsc完成签到,获得积分10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
欧阳振应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
LaTeXer应助科研通管家采纳,获得50
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420