ERP Staff versus AI recruitment with employment real-time big data

互联网 大数据 人工智能 计算机科学 集合(抽象数据类型) 人力资源管理 人力资源 机器学习 知识管理 数据科学 自然语言处理 万维网 数据挖掘 管理 经济 程序设计语言
作者
Kenneth David Strang,Zhaohao Sun
出处
期刊:Discover Artificial Intelligence [Springer Nature]
卷期号:2 (1) 被引量:5
标识
DOI:10.1007/s44163-022-00037-1
摘要

Abstract The purpose of this study was to evaluate the effectiveness of using natural language processing (NLP) artificial intelligence (AI) in enterprise resources planning (ERP) to identify specialized job candidates in real-time big data—globally across the internet. The central problem was that companies using traditional methods for recruiting remote specialists were missing good candidates because the skilled employees may not be looking for a job yet they may be receptive to an offer. The auxiliary problem was too much data on the internet for human resources management (HRM) staff to make sense of to find the best-fitting candidate. Thus, the research question was: could NLP AI identify good candidates for ERP remote specialist jobs using internet real-time big data? Job criteria were developed using machine learning to identify key skills from existing staff in a case study company. The skills were transformed into ERP remote specialists hiring criteria. The NLP AI software was activated to find the best candidate. The HRM staff at the case study company evaluated the effectiveness of the candidate selected by the NLP AI. The case study company set 70% as the acceptable mean evaluation score. ANOVA was used to determine if HRM staff agreed about their evaluation scores. A Z-test was used to determine if the NLP AI was faster than the mean time needed for HRM to select ERP candidates. The results were that the NLP AI outperformed the humans by a factor of almost 8 h. All HRM staff agreed that the NLP AI was effective in selecting a candidate to match the hiring criteria. The proposed approach might facilitate the research and development of big data, data analytics, NLP AI, and HRM process improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
零度冰发布了新的文献求助10
刚刚
1秒前
乐观的海发布了新的文献求助10
1秒前
2秒前
开心的若血完成签到,获得积分10
3秒前
轻松的芯完成签到 ,获得积分10
4秒前
4秒前
脑洞疼应助姆问题采纳,获得10
5秒前
5秒前
池叙发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
李Tt完成签到,获得积分10
7秒前
文静发布了新的文献求助10
8秒前
陈住气发布了新的文献求助10
8秒前
chunjianghua完成签到,获得积分10
8秒前
畅快手套发布了新的文献求助10
9秒前
炙热一凤应助hahaha采纳,获得20
9秒前
NexusExplorer应助666采纳,获得10
10秒前
FashionBoy应助油麦采纳,获得10
10秒前
Youdge发布了新的文献求助20
10秒前
晨晨完成签到 ,获得积分10
11秒前
11秒前
kbd发布了新的文献求助10
12秒前
12秒前
英俊的铭应助cumtlhy88采纳,获得10
14秒前
150350完成签到,获得积分10
14秒前
14秒前
小马甲应助甜美奇异果采纳,获得10
15秒前
15秒前
pzz发布了新的文献求助10
16秒前
16秒前
YY完成签到,获得积分10
17秒前
刻苦大门完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
zw发布了新的文献求助30
17秒前
科研通AI5应助antarctica采纳,获得10
18秒前
18秒前
DC发布了新的文献求助10
19秒前
Jasper应助户户得振采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113157
求助须知:如何正确求助?哪些是违规求助? 4320580
关于积分的说明 13462775
捐赠科研通 4151924
什么是DOI,文献DOI怎么找? 2275014
邀请新用户注册赠送积分活动 1276951
关于科研通互助平台的介绍 1215136