数学
李群
纯数学
不变(物理)
秩(图论)
歧管(流体力学)
李代数
度量(数据仓库)
动作(物理)
概率测度
边界(拓扑)
组合数学
离散数学
数学分析
数学物理
物理
工程类
机械工程
数据库
量子力学
计算机科学
作者
Aaron Brown,Federico Hertz,Zhiren Wang
标识
DOI:10.4007/annals.2022.196.3.2
摘要
We consider smooth actions of lattices in higher-rank semisimple Lie groups on manifolds. We define two numbers $r(G)$ and $m(G)$ associated with the roots system of the Lie algebra of a Lie group $G$. If the dimension of the manifold is smaller than $r(G)$, then we show the action preserves a Borel probability measure. If the dimension of the manifold is at most $m(G)$, we show there is a quasi-invariant measure on the manifold such that the action is measurably isomorphic to a relatively measure-preserving action over a standard boundary action.
科研通智能强力驱动
Strongly Powered by AbleSci AI