Preliminary assessment of the effectiveness of neoadjuvant chemotherapy in breast cancer with the use of ultrasound image quality indexes

超声波 乳腺癌 医学 放射科 乳腺超声检查 图像质量 癌症 计算机科学 人工智能 内科学 乳腺摄影术 图像(数学)
作者
Anna Pawłowska,Norbert Żołek,Beata Leśniak-Plewińska,Katarzyna Dobruch-Sobczak,Ziemowit Klimonda,Hanna Piotrzkowska-Wróblewska,Jerzy Litniewski
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104393-104393
标识
DOI:10.1016/j.bspc.2022.104393
摘要

Neoadjuvant chemotherapy (NAC) in breast cancer requires non-invasive methods of monitoring its effects after each dose of drug therapy. The aim is to isolate responding and non-responding tumors prior to surgery in order to increase patient safety and select the optimal medical follow-up. A new method of monitoring NAC therapy has been proposed. The method is based on image quality indexes (IQI) calculated from ultrasound data obtained from breast tumors and surrounding tissue. Four different tissue regions from the preliminary set of 38 tumors and three data pre-processing techniques are considered. Postoperative histopathology results were used as a benchmark in evaluating the effectiveness of the IQI classification. Out of ten parameters considered, the best results were obtained for the Gray Relational Coefficient. Responding and non-responding tumors were predicted after the first dose of NAC with an area under the receiver operating characteristics curve of 0.88 and 0.75, respectively. When considering subsequent doses of NAC, other IQI parameters also proved usefulness in evaluating NAC therapy. The image quality parameters derived from the ultrasound data are well suited for assessing the effects of NAC therapy, in particular on breast tumors. • A method of the analysis of ultrasound data of the lesion and surrounding tissue • A method of monitoring NAC therapy based on ultrasound data of breast tumors • Subjects responding to NAC can be detected already after the first stage of treatment • Prediction of responding and non-responding tumors with AUC of 0.88 and 0.75 • The image quality parameters are well-suited for assessing the effects of NAC therapy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯狂的虔完成签到,获得积分10
刚刚
TheQ发布了新的文献求助10
1秒前
朱文琛完成签到,获得积分10
1秒前
1秒前
2秒前
菟撕纸发布了新的文献求助10
3秒前
靓丽紫雪发布了新的文献求助10
4秒前
无辜梨愁完成签到 ,获得积分10
5秒前
Nienie完成签到,获得积分20
5秒前
yu发布了新的文献求助10
7秒前
Nienie发布了新的文献求助10
8秒前
养猪人完成签到,获得积分10
12秒前
乐乐应助MQ&FF采纳,获得10
13秒前
14秒前
小小发布了新的文献求助10
18秒前
科研通AI2S应助陌路采纳,获得10
18秒前
18秒前
19秒前
19秒前
小陶完成签到,获得积分20
20秒前
20秒前
隐形曼青应助Della采纳,获得10
21秒前
21秒前
22秒前
22秒前
yy发布了新的文献求助10
22秒前
23秒前
SciGPT应助zxy采纳,获得10
23秒前
normalgai完成签到,获得积分10
25秒前
务实幼蓉发布了新的文献求助10
25秒前
zhaoyingxin发布了新的文献求助10
26秒前
慕容飞凤发布了新的文献求助30
27秒前
MQ&FF发布了新的文献求助10
27秒前
28秒前
yy完成签到,获得积分20
28秒前
叶子完成签到,获得积分10
28秒前
周一发布了新的文献求助10
28秒前
helinahs完成签到 ,获得积分10
30秒前
30秒前
天天快乐应助HYT采纳,获得10
30秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157329
求助须知:如何正确求助?哪些是违规求助? 2808824
关于积分的说明 7878475
捐赠科研通 2467158
什么是DOI,文献DOI怎么找? 1313222
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919