A Transformer Framework for Data Fusion and Multi-Task Learning in Smart Cities

计算机科学 机器学习 人工智能 传感器融合
作者
Alexander C. DeRieux,Walid Saad,Wangda Zuo,Rachmawan Budiarto,Mochamad Donny Koerniawan,Dwi Novitasari
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.10506
摘要

Rapid global urbanization is a double-edged sword, heralding promises of economical prosperity and public health while also posing unique environmental and humanitarian challenges. Smart and connected communities (S&CCs) apply data-centric solutions to these problems by integrating artificial intelligence (AI) and the Internet of Things (IoT). This coupling of intelligent technologies also poses interesting system design challenges regarding heterogeneous data fusion and task diversity. Transformers are of particular interest to address these problems, given their success across diverse fields of natural language processing (NLP), computer vision, time-series regression, and multi-modal data fusion. This begs the question whether Transformers can be further diversified to leverage fusions of IoT data sources for heterogeneous multi-task learning in S&CC trade spaces. In this paper, a Transformer-based AI system for emerging smart cities is proposed. Designed using a pure encoder backbone, and further customized through interchangeable input embedding and output task heads, the system supports virtually any input data and output task types present S&CCs. This generalizability is demonstrated through learning diverse task sets representative of S&CC environments, including multivariate time-series regression, visual plant disease classification, and image-time-series fusion tasks using a combination of Beijing PM2.5 and Plant Village datasets. Simulation results show that the proposed Transformer-based system can handle various input data types via custom sequence embedding techniques, and are naturally suited to learning a diverse set of tasks. The results also show that multi-task learners increase both memory and computational efficiency while maintaining comparable performance to both single-task variants, and non-Transformer baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangxinyi完成签到 ,获得积分10
刚刚
pups发布了新的文献求助10
1秒前
芳芳发布了新的文献求助10
1秒前
万能图书馆应助lq采纳,获得10
2秒前
香蕉觅云应助危机的玉米采纳,获得10
2秒前
充电宝应助一一采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
yao完成签到,获得积分10
2秒前
郭德久完成签到 ,获得积分10
3秒前
gmc关闭了gmc文献求助
4秒前
4秒前
大模型应助yao采纳,获得10
6秒前
6秒前
6秒前
7秒前
bunny发布了新的文献求助10
7秒前
一只西瓜茶完成签到,获得积分20
7秒前
7秒前
共享精神应助修日天采纳,获得10
8秒前
orixero应助贪玩寄翠采纳,获得10
8秒前
刘佳完成签到 ,获得积分10
9秒前
9秒前
高贵振家发布了新的文献求助10
10秒前
10秒前
sciscisci发布了新的文献求助10
10秒前
EShan完成签到,获得积分10
10秒前
10秒前
zy完成签到,获得积分10
10秒前
香蕉觅云应助数值分析采纳,获得10
11秒前
11秒前
邱邱完成签到,获得积分10
12秒前
目眩完成签到,获得积分10
12秒前
12秒前
RNAPW发布了新的文献求助10
12秒前
roy完成签到,获得积分20
13秒前
Lorain发布了新的文献求助10
13秒前
教授王发布了新的文献求助10
13秒前
14秒前
15秒前
menghongmei发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709417
求助须知:如何正确求助?哪些是违规求助? 5194819
关于积分的说明 15256984
捐赠科研通 4862196
什么是DOI,文献DOI怎么找? 2609928
邀请新用户注册赠送积分活动 1560336
关于科研通互助平台的介绍 1518058