A Transformer Framework for Data Fusion and Multi-Task Learning in Smart Cities

计算机科学 机器学习 人工智能 传感器融合
作者
Alexander C. DeRieux,Walid Saad,Wangda Zuo,Rachmawan Budiarto,Mochamad Donny Koerniawan,Dwi Novitasari
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.10506
摘要

Rapid global urbanization is a double-edged sword, heralding promises of economical prosperity and public health while also posing unique environmental and humanitarian challenges. Smart and connected communities (S&CCs) apply data-centric solutions to these problems by integrating artificial intelligence (AI) and the Internet of Things (IoT). This coupling of intelligent technologies also poses interesting system design challenges regarding heterogeneous data fusion and task diversity. Transformers are of particular interest to address these problems, given their success across diverse fields of natural language processing (NLP), computer vision, time-series regression, and multi-modal data fusion. This begs the question whether Transformers can be further diversified to leverage fusions of IoT data sources for heterogeneous multi-task learning in S&CC trade spaces. In this paper, a Transformer-based AI system for emerging smart cities is proposed. Designed using a pure encoder backbone, and further customized through interchangeable input embedding and output task heads, the system supports virtually any input data and output task types present S&CCs. This generalizability is demonstrated through learning diverse task sets representative of S&CC environments, including multivariate time-series regression, visual plant disease classification, and image-time-series fusion tasks using a combination of Beijing PM2.5 and Plant Village datasets. Simulation results show that the proposed Transformer-based system can handle various input data types via custom sequence embedding techniques, and are naturally suited to learning a diverse set of tasks. The results also show that multi-task learners increase both memory and computational efficiency while maintaining comparable performance to both single-task variants, and non-Transformer baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
akjsi发布了新的文献求助10
3秒前
科研通AI2S应助Cassio采纳,获得10
3秒前
4秒前
苏书白应助洋芋采纳,获得10
5秒前
fuiee发布了新的文献求助10
5秒前
小叶不吃香菜完成签到,获得积分10
6秒前
7秒前
7秒前
11秒前
pan发布了新的文献求助10
11秒前
Owen应助温暖寻雪采纳,获得10
11秒前
sail完成签到,获得积分10
11秒前
kiseki完成签到 ,获得积分10
14秒前
14秒前
14秒前
15秒前
研友_诺发布了新的文献求助10
16秒前
冷酷非笑完成签到,获得积分10
16秒前
今后应助sail采纳,获得20
17秒前
乐乐应助肖恩采纳,获得10
19秒前
小宇宙完成签到 ,获得积分10
19秒前
冷酷非笑发布了新的文献求助10
20秒前
dd完成签到 ,获得积分10
23秒前
今后应助研友_诺采纳,获得10
24秒前
bkagyin应助爱听歌笑寒采纳,获得10
25秒前
27秒前
28秒前
刘66完成签到,获得积分10
28秒前
29秒前
sail发布了新的文献求助20
30秒前
肖恩发布了新的文献求助10
31秒前
研友_诺完成签到,获得积分10
31秒前
不吃榴莲完成签到,获得积分10
31秒前
LIU完成签到,获得积分20
31秒前
32秒前
32秒前
大气新烟完成签到 ,获得积分10
33秒前
34秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706