清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Transformer Framework for Data Fusion and Multi-Task Learning in Smart Cities

计算机科学 机器学习 人工智能 传感器融合
作者
Alexander C. DeRieux,Walid Saad,Wangda Zuo,Rachmawan Budiarto,Mochamad Donny Koerniawan,Dwi Novitasari
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2211.10506
摘要

Rapid global urbanization is a double-edged sword, heralding promises of economical prosperity and public health while also posing unique environmental and humanitarian challenges. Smart and connected communities (S&CCs) apply data-centric solutions to these problems by integrating artificial intelligence (AI) and the Internet of Things (IoT). This coupling of intelligent technologies also poses interesting system design challenges regarding heterogeneous data fusion and task diversity. Transformers are of particular interest to address these problems, given their success across diverse fields of natural language processing (NLP), computer vision, time-series regression, and multi-modal data fusion. This begs the question whether Transformers can be further diversified to leverage fusions of IoT data sources for heterogeneous multi-task learning in S&CC trade spaces. In this paper, a Transformer-based AI system for emerging smart cities is proposed. Designed using a pure encoder backbone, and further customized through interchangeable input embedding and output task heads, the system supports virtually any input data and output task types present S&CCs. This generalizability is demonstrated through learning diverse task sets representative of S&CC environments, including multivariate time-series regression, visual plant disease classification, and image-time-series fusion tasks using a combination of Beijing PM2.5 and Plant Village datasets. Simulation results show that the proposed Transformer-based system can handle various input data types via custom sequence embedding techniques, and are naturally suited to learning a diverse set of tasks. The results also show that multi-task learners increase both memory and computational efficiency while maintaining comparable performance to both single-task variants, and non-Transformer baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得30
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
FXe发布了新的文献求助10
21秒前
22秒前
默默的骁完成签到,获得积分10
24秒前
ceeray23发布了新的文献求助30
24秒前
默默的骁发布了新的文献求助10
28秒前
华仔应助默默的骁采纳,获得10
52秒前
sting完成签到,获得积分10
56秒前
1分钟前
冷静的尔竹完成签到,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
管夜白完成签到 ,获得积分10
2分钟前
舒适的淇完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
喜悦的唇彩完成签到,获得积分10
2分钟前
筱奇发布了新的文献求助20
2分钟前
2分钟前
huhu发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
huhu完成签到,获得积分10
2分钟前
筱奇完成签到,获得积分10
3分钟前
合不着完成签到 ,获得积分10
3分钟前
光头饼完成签到,获得积分10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
李爱国应助xun采纳,获得10
3分钟前
3分钟前
xun发布了新的文献求助10
3分钟前
xun完成签到,获得积分20
4分钟前
xue完成签到 ,获得积分10
4分钟前
蛋白积聚完成签到,获得积分10
4分钟前
sudeep完成签到,获得积分10
4分钟前
qianlu完成签到 ,获得积分10
4分钟前
daguan完成签到,获得积分10
4分钟前
科研通AI6应助jing采纳,获得10
5分钟前
加贝完成签到 ,获得积分10
5分钟前
耳东完成签到 ,获得积分10
5分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771581
捐赠科研通 4614599
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551