Predicting Hydrological Drought With Bayesian Model Averaging Ensemble Vine Copula (BMAViC) Model

环境科学 水流 藤蔓copula 连接词(语言学) 水资源 贝叶斯推理 气候学 水文学(农业) 流域 贝叶斯概率 计量经济学 统计 生态学 数学 地理 地图学 岩土工程 地质学 生物
作者
Haijiang Wu,Xiaoling Su,Vijay P. Singh,Te Zhang
出处
期刊:Water Resources Research [Wiley]
卷期号:58 (11) 被引量:9
标识
DOI:10.1029/2022wr033146
摘要

Abstract Streamflow deficit (hydrological drought) poses a large risk to water resources management, agricultural production, water supply, hydropower generation, and ecosystem services. Reliable and robust hydrological drought predictions are critical for water and food security and ecosystem health under anthropogenic warming. However, the prevalent statistical prediction methods, for example, the meta‐Gaussian (MG) model, usually do not lead to accurate drought predictions. We therefore developed a new drought prediction model utilizing the Bayesian Model Averaging coupled with Vine Copula, called Bayesian Model Averaging Ensemble Vine Copula (BMAViC) model, in which previous meteorological drought, antecedent evaporative drought, and preceding hydrological drought were selected as three predictors. The BMAViC model was applied to the Upper Yellow River basin and showed robust skills during calibration and validation periods for 1‐ to 3‐month lead hydrological drought predictions. In comparison with the MG model (reference model), the skills of the proposed model were relatively stable and superior under diverse lead times. Good performances under the 1‐ to 3‐month lead times strongly implied that the BMAViC model yielded robust and accurate hydrological drought predictions. The study results enhance our confidence in seasonal drought prediction and help us understand drought dynamics in future months.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流星完成签到,获得积分10
2秒前
Much发布了新的文献求助10
2秒前
3秒前
严究生完成签到,获得积分10
3秒前
星弟发布了新的文献求助10
4秒前
余111关注了科研通微信公众号
5秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
田様应助科研通管家采纳,获得30
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
何照人应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Able应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得20
10秒前
科目三应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
太叔捕发布了新的文献求助10
10秒前
11秒前
搜集达人应助rotator采纳,获得10
12秒前
星弟完成签到,获得积分10
12秒前
完美世界应助我的山本采纳,获得10
13秒前
shinn发布了新的文献求助10
14秒前
15秒前
充电宝应助汽水121856采纳,获得10
16秒前
17秒前
龙仔子发布了新的文献求助10
17秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498