Electrical cell-to-cell variations within large-scale battery systems — A novel characterization and modeling approach

电池(电) 背景(考古学) 电压 比例(比率) 计算机科学 控制理论(社会学) 工程类 电气工程 功率(物理) 人工智能 量子力学 生物 物理 古生物学 控制(管理)
作者
Alexander Reiter,Susanne Lehner,Oliver Bohlen,Dirk Uwe Sauer
出处
期刊:Journal of energy storage [Elsevier]
卷期号:57: 106152-106152 被引量:3
标识
DOI:10.1016/j.est.2022.106152
摘要

Digital twins for large-scale and investment-intensive Li-ion battery systems in marine and stationary applications have drawn increasing interest in recent years. Considering electrical cell-to-cell variations (CtCVs) within the underlying battery model of such a digital twin promises various advantages in the fields of model-based optimization and predictive maintenance. However, the existing approaches for both the characterization and modeling of CtCVs are unsuited for large-scale systems consisting of thousands of individual cells. In this context, this paper introduces a holistic tool chain comprising three main elements: First, a non-destructive method for the in-situ determination of resistance and capacity distributions within a battery system is presented. The method was evaluated on a commercial battery module for stationary applications consisting of 64 Ah pouch cells in 14s2p configuration. In the second step, the obtained distributions were used to parameterize a state-of-the-art multi-cell battery model, which allows the calculation of the voltage distribution within the system. The validation showed that the resulting model is able to calculate the voltage spread (Vcell,max(t)−Vcell,min(t)) with a mean average error of 1.1 mV for a 24 h load profile. In the third step, multivariate statistical analysis was used on the obtained parameters in order to simplify the original model and thereby reducing its computational demands. The simplification approach allows the calculation of envelope voltages curves within which a random cell can be found with a given probability. In comparison to the original model, the simplified model was able to represent the voltage extrema while reducing the computation time by a factor of 27. This renders the simplified model applicable for live digital twin applications for large-scale battery systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
NexusExplorer应助无奈满天采纳,获得10
刚刚
qwt_hello完成签到,获得积分10
刚刚
刚刚
海涛完成签到,获得积分10
1秒前
星星发布了新的文献求助10
2秒前
qq完成签到,获得积分10
2秒前
2秒前
2秒前
中央戏精学院完成签到,获得积分10
2秒前
寒冷依秋完成签到,获得积分10
2秒前
彭于晏应助jogrgr采纳,获得10
2秒前
思源应助momo采纳,获得10
3秒前
guozi应助yi采纳,获得10
3秒前
科研通AI2S应助鲤鱼凛采纳,获得10
3秒前
3秒前
kumarr发布了新的文献求助10
3秒前
3秒前
时尚语梦发布了新的文献求助10
3秒前
苹果酸奶完成签到,获得积分10
4秒前
标致小伙发布了新的文献求助10
5秒前
5秒前
5秒前
科研民工发布了新的文献求助10
5秒前
Owen应助sun采纳,获得10
5秒前
handsomecat发布了新的文献求助10
5秒前
乐乐关注了科研通微信公众号
5秒前
5秒前
Kriemhild完成签到,获得积分10
6秒前
dz完成签到,获得积分10
6秒前
小可发布了新的文献求助10
6秒前
夜雨声烦完成签到,获得积分10
6秒前
MrCoolWu发布了新的文献求助10
6秒前
过时的不评完成签到,获得积分10
7秒前
7秒前
7秒前
月儿发布了新的文献求助10
8秒前
落落完成签到 ,获得积分10
8秒前
羊羊完成签到 ,获得积分20
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759