纤维蛋白胶
生物粘附
生物医学工程
辅助
材料科学
离体
体内
纳米技术
外科
复合材料
药物输送
医学
生物技术
生物
作者
Parth Chansoria,Emily E. Bonacquisti,Mairead K. Heavey,Lina Le,Murali Kannan Maruthamuthu,John Blackwell,Natalie E. Jasiewicz,Rani S. Sellers,Robert Maile,Shannon M. Wallet,Thomas M. Egan,Juliane Nguyen
标识
DOI:10.1101/2022.11.25.517820
摘要
Abstract Bioadhesive materials and patches are promising alternatives to surgical sutures and staples. However, many existing bioadhesives do not meet the functional requirements of current surgical procedures and interventions. Here we present a translational patch material that exhibits: (1) instant adhesion to wet tissues (2.5-fold stronger than Tisseel, an FDA-approved fibrin glue), (2) ultra-stretchability (stretching to >300% its original length without losing elasticity), (3) compatibility with rapid photo-projection (<2 min fabrication time/patch), and (4) ability to deliver therapeutics. Using our established procedures for the in silico design and optimization of anisotropic-auxetic patches, we create next generation patches for instant attachment to wet and dry tissues while conforming to a broad range of organ mechanics ex vivo and in vivo . Patches coated with exosomes demonstrate robust wound healing capability in vivo without inducing a foreign body response and without the need for patch removal that can cause pain and bleeding. We further demonstrate a new single material-based, void-filling auxetic patch designed for the treatment of lung puncture wounds. Teaser We demonstrate a sticky and highly elastic patch with conforming designs for dynamic organ repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI