炎症体
硼替佐米
药理学
银屑病
化学
炎症
蛋白酶体
发病机制
吡喃结构域
癌症研究
医学
多发性骨髓瘤
免疫学
生物化学
作者
Xiuhui Chen,Yanhong Chen,Yitao Ou,Wenjie Min,Shuli Liang,Lei Hua,Yinghua Zhou,Cheng Zhang,Peifeng Chen,Zhongjin Yang,Wenhui Hu,Ping Sun
标识
DOI:10.1016/j.bcp.2022.115326
摘要
The abnormal activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the pathogenesis of psoriasis. Accordingly, the inhibition of NLRP3 inflammasome may be an effective strategy for psoriasis treatment. However, the NLRP3 inflammasome inhibitors are not available in the clinic. Repurposing FDA-approved drugs is a highly attractive way for identifying new drugs. Here, proteasome inhibitor bortezomib, a marketed drug for treating multiple myeloma, was found to specifically inhibit NLRP3 inflammasome activation at nanomolar concentrations. Mechanistically, bortezomib did not inhibit reactive oxygen species generation, ion efflux, NLRP3 oligomerization, and NLRP3-ASC interactions. Bortezomib reduced ASC oligomerization and ASC speck formation. In addition, bortezomib inhibited the activity of the core subunit β5i in the immunoproteasome and reduced β5i binding to NLRP3. Bortezomib reduced the production of interleukin-1β and attenuated the severity of skin lesions in the imiquimod-induced psoriatic mouse model. Thus, bortezomib is a potential therapeutic drug for psoriasis. Our study also revealed that β5i may be an indirect target for regulating NLRP3 inflammasome activation and treating psoriasis and other NLRP3 inflammasome-related diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI