Data-Driven Model-Free Adaptive Sliding Mode Control Based on FFDL for Electric Multiple Units

控制理论(社会学) 稳健性(进化) 滑模控制 控制工程 工程类 计算机科学 非线性系统 线性化 跟踪误差 控制器(灌溉) 控制(管理) 人工智能 物理 基因 生物 量子力学 化学 生物化学 农学
作者
Liang Zhou,Zhongqi Li,Hui Yang,Yating Fu,Yue Yan
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (21): 10983-10983 被引量:9
标识
DOI:10.3390/app122110983
摘要

The electric multiple units (EMUs) have become a very convenient and powerful means of transportation in our daily life. Safe and punctual trajectory tracking control is the key to improve the performance of the EMUs system, but it is difficult to realize due to the influence of environmental uncertainty, coupling and nonlinearity. In this paper, a model-free adaptive sliding mode control (MFASMC) method is proposed for the EMUs. This method can solve the dependence of the model-based control method on the train model and eliminate the influence of external disturbances on the robust performance of the system. In this method, the running process of the EMUs is equivalent to a full format dynamic linearization (FFDL) data model, and a model-free adaptive controller (MFAC) is designed based on the data model. Then, to reduce the influence of measurement disturbance and improve the robustness of the system, a discrete sliding mode control (SMC) algorithm is introduced. Furthermore, to prevent the control input from being too large, the parameter estimation error is introduced as an additional correction term of the algorithm. In the end, the simulation experiment is carried out with CRH380A EMUs as the object. Compared with the traditional MFAC and the traditional SMC, the speed tracking effect of each power unit of the MFASMC algorithm is more effective, the change of control force is stable, the acceleration meets the requirements of driving, and has a strong inhibitory effect on external disturbances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
kingwill应助科研通管家采纳,获得20
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
cdercder应助科研通管家采纳,获得30
刚刚
刚刚
醋溜荧光大蒜完成签到 ,获得积分10
1秒前
英姑应助雯小瑾采纳,获得10
1秒前
充电宝应助坐看云起时采纳,获得10
2秒前
赘婿应助Hh采纳,获得10
4秒前
脑洞疼应助岁月星辰采纳,获得10
4秒前
认真的飞扬完成签到,获得积分10
5秒前
li完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
AronHUANG完成签到,获得积分10
9秒前
11秒前
chen发布了新的文献求助10
11秒前
正直的闭月完成签到,获得积分10
12秒前
kkkkkk发布了新的文献求助10
12秒前
大象放冰箱完成签到,获得积分10
13秒前
HHD发布了新的文献求助10
13秒前
Qiqige应助小橘子采纳,获得10
14秒前
眯眯眼的篮球应助小橘子采纳,获得10
14秒前
爱你呃不可能应助小橘子采纳,获得10
14秒前
鸭梨发布了新的文献求助10
14秒前
科研通AI5应助zzzzz采纳,获得10
14秒前
14秒前
JIU夭发布了新的文献求助10
14秒前
16秒前
七叶完成签到,获得积分10
17秒前
今后应助LBF采纳,获得10
17秒前
岁月星辰完成签到,获得积分10
18秒前
wanci应助南城采纳,获得10
19秒前
RC_Wang应助HHD采纳,获得10
21秒前
打打应助HHD采纳,获得10
21秒前
爆米花应助HHD采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514599
求助须知:如何正确求助?哪些是违规求助? 3096989
关于积分的说明 9233427
捐赠科研通 2791987
什么是DOI,文献DOI怎么找? 1532191
邀请新用户注册赠送积分活动 711826
科研通“疑难数据库(出版商)”最低求助积分说明 707031