亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Extraction of microRNA–target interaction sentences from biomedical literature by deep learning approach

计算机科学 人工智能 深度学习 机器学习 判决 构造(python库) 随机森林 人工神经网络 关系抽取 支持向量机 自然语言处理 信息抽取 程序设计语言
作者
Mengqi Luo,Shangfu Li,Yuxuan Pang,Lantian Yao,Renfei Ma,Hsi-Yuan Huang,Hsien-Da Huang,Tzong-Yi Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac497
摘要

Abstract MicroRNA (miRNA)–target interaction (MTI) plays a substantial role in various cell activities, molecular regulations and physiological processes. Published biomedical literature is the carrier of high-confidence MTI knowledge. However, digging out this knowledge in an efficient manner from large-scale published articles remains challenging. To address this issue, we were motivated to construct a deep learning-based model. We applied the pre-trained language models to biomedical text to obtain the representation, and subsequently fed them into a deep neural network with gate mechanism layers and a fully connected layer for the extraction of MTI information sentences. Performances of the proposed models were evaluated using two datasets constructed on the basis of text data obtained from miRTarBase. The validation and test results revealed that incorporating both PubMedBERT and SciBERT for sentence level encoding with the long short-term memory (LSTM)-based deep neural network can yield an outstanding performance, with both F1 and accuracy being higher than 80% on validation data and test data. Additionally, the proposed deep learning method outperformed the following machine learning methods: random forest, support vector machine, logistic regression and bidirectional LSTM. This work would greatly facilitate studies on MTI analysis and regulations. It is anticipated that this work can assist in large-scale screening of miRNAs, thereby revealing their functional roles in various diseases, which is important for the development of highly specific drugs with fewer side effects. Source code and corpus are publicly available at https://github.com/qi29.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
16秒前
20秒前
Lucas应助科研通管家采纳,获得10
26秒前
49秒前
wrry发布了新的文献求助10
56秒前
1分钟前
叙温雨发布了新的文献求助10
1分钟前
Lucas应助叙温雨采纳,获得10
2分钟前
Raunio完成签到,获得积分10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
叙温雨发布了新的文献求助10
2分钟前
2分钟前
Hello应助展锋采纳,获得10
2分钟前
3分钟前
展锋发布了新的文献求助10
3分钟前
年鱼精完成签到 ,获得积分10
3分钟前
酷波er应助叙温雨采纳,获得10
3分钟前
hairgod发布了新的文献求助10
4分钟前
清秀大白菜真实的钥匙完成签到,获得积分10
4分钟前
hairgod完成签到,获得积分10
4分钟前
4分钟前
4分钟前
思源应助科研通管家采纳,获得30
4分钟前
Owen应助科研通管家采纳,获得10
4分钟前
研友_VZG7GZ应助叙温雨采纳,获得10
4分钟前
Confetti完成签到 ,获得积分10
4分钟前
4分钟前
奔跑的小熊完成签到 ,获得积分10
5分钟前
安安最可爱完成签到 ,获得积分10
5分钟前
可靠幻然发布了新的文献求助10
5分钟前
贪玩的万仇完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
迷路平安发布了新的文献求助10
5分钟前
叙温雨发布了新的文献求助10
5分钟前
lin发布了新的文献求助10
5分钟前
迷路平安完成签到,获得积分20
6分钟前
lin完成签到,获得积分10
6分钟前
叙温雨发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292090
求助须知:如何正确求助?哪些是违规求助? 4442784
关于积分的说明 13830421
捐赠科研通 4326084
什么是DOI,文献DOI怎么找? 2374641
邀请新用户注册赠送积分活动 1369974
关于科研通互助平台的介绍 1334349