Extraction of microRNA–target interaction sentences from biomedical literature by deep learning approach

计算机科学 人工智能 深度学习 机器学习 判决 构造(python库) 随机森林 人工神经网络 关系抽取 支持向量机 自然语言处理 信息抽取 程序设计语言
作者
Mengqi Luo,Shangfu Li,Yuxuan Pang,Lantian Yao,Renfei Ma,Hsi-Yuan Huang,Hsien-Da Huang,Tzong-Yi Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac497
摘要

Abstract MicroRNA (miRNA)–target interaction (MTI) plays a substantial role in various cell activities, molecular regulations and physiological processes. Published biomedical literature is the carrier of high-confidence MTI knowledge. However, digging out this knowledge in an efficient manner from large-scale published articles remains challenging. To address this issue, we were motivated to construct a deep learning-based model. We applied the pre-trained language models to biomedical text to obtain the representation, and subsequently fed them into a deep neural network with gate mechanism layers and a fully connected layer for the extraction of MTI information sentences. Performances of the proposed models were evaluated using two datasets constructed on the basis of text data obtained from miRTarBase. The validation and test results revealed that incorporating both PubMedBERT and SciBERT for sentence level encoding with the long short-term memory (LSTM)-based deep neural network can yield an outstanding performance, with both F1 and accuracy being higher than 80% on validation data and test data. Additionally, the proposed deep learning method outperformed the following machine learning methods: random forest, support vector machine, logistic regression and bidirectional LSTM. This work would greatly facilitate studies on MTI analysis and regulations. It is anticipated that this work can assist in large-scale screening of miRNAs, thereby revealing their functional roles in various diseases, which is important for the development of highly specific drugs with fewer side effects. Source code and corpus are publicly available at https://github.com/qi29.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
刘晓倩发布了新的文献求助10
3秒前
胜道完成签到,获得积分20
3秒前
宇老师发布了新的文献求助10
3秒前
无限的铅笔应助小秋采纳,获得30
4秒前
5秒前
CodeCraft应助舒服的友安采纳,获得10
5秒前
轻松无剑发布了新的文献求助10
5秒前
Jasper应助派大星采纳,获得10
7秒前
chensiqi发布了新的文献求助10
7秒前
脑洞疼应助dan1029采纳,获得10
8秒前
wanci应助dan1029采纳,获得10
8秒前
在水一方应助dan1029采纳,获得10
8秒前
希望天下0贩的0应助dan1029采纳,获得10
8秒前
FashionBoy应助dan1029采纳,获得10
8秒前
天天快乐应助dan1029采纳,获得10
8秒前
落瑾玘应助dan1029采纳,获得10
8秒前
华仔应助dan1029采纳,获得10
8秒前
香蕉觅云应助dan1029采纳,获得10
8秒前
粗犷的沛容应助dan1029采纳,获得10
8秒前
深情安青应助OA采纳,获得10
9秒前
xft完成签到,获得积分10
9秒前
陈志亨发布了新的文献求助10
9秒前
gty发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
14秒前
14秒前
wuwuwu1wu完成签到,获得积分10
15秒前
jfw一支笔完成签到,获得积分10
15秒前
15秒前
顾矜应助学习猴采纳,获得10
16秒前
17秒前
轻松无剑完成签到,获得积分10
17秒前
17秒前
qqq完成签到 ,获得积分10
18秒前
科研力力完成签到 ,获得积分20
18秒前
kkk发布了新的文献求助10
18秒前
云阿柔完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111061
求助须知:如何正确求助?哪些是违规求助? 2761270
关于积分的说明 7664744
捐赠科研通 2416259
什么是DOI,文献DOI怎么找? 1282426
科研通“疑难数据库(出版商)”最低求助积分说明 619014
版权声明 599478