已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Extraction of microRNA–target interaction sentences from biomedical literature by deep learning approach

计算机科学 人工智能 深度学习 机器学习 判决 构造(python库) 随机森林 人工神经网络 关系抽取 支持向量机 自然语言处理 信息抽取 程序设计语言
作者
Mengqi Luo,Shangfu Li,Yuxuan Pang,Lantian Yao,Renfei Ma,Hsi-Yuan Huang,Hsien-Da Huang,Tzong-Yi Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac497
摘要

Abstract MicroRNA (miRNA)–target interaction (MTI) plays a substantial role in various cell activities, molecular regulations and physiological processes. Published biomedical literature is the carrier of high-confidence MTI knowledge. However, digging out this knowledge in an efficient manner from large-scale published articles remains challenging. To address this issue, we were motivated to construct a deep learning-based model. We applied the pre-trained language models to biomedical text to obtain the representation, and subsequently fed them into a deep neural network with gate mechanism layers and a fully connected layer for the extraction of MTI information sentences. Performances of the proposed models were evaluated using two datasets constructed on the basis of text data obtained from miRTarBase. The validation and test results revealed that incorporating both PubMedBERT and SciBERT for sentence level encoding with the long short-term memory (LSTM)-based deep neural network can yield an outstanding performance, with both F1 and accuracy being higher than 80% on validation data and test data. Additionally, the proposed deep learning method outperformed the following machine learning methods: random forest, support vector machine, logistic regression and bidirectional LSTM. This work would greatly facilitate studies on MTI analysis and regulations. It is anticipated that this work can assist in large-scale screening of miRNAs, thereby revealing their functional roles in various diseases, which is important for the development of highly specific drugs with fewer side effects. Source code and corpus are publicly available at https://github.com/qi29.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haul完成签到 ,获得积分10
刚刚
希望天下0贩的0应助asudent采纳,获得30
2秒前
22222发布了新的文献求助10
3秒前
3秒前
6秒前
hfnnn完成签到 ,获得积分10
7秒前
10秒前
乐乐应助duoduo采纳,获得10
10秒前
今后应助harri采纳,获得10
12秒前
发嗲的向雪完成签到,获得积分10
13秒前
A001发布了新的文献求助10
14秒前
米奇妙妙屋关注了科研通微信公众号
16秒前
17秒前
20秒前
20秒前
harri发布了新的文献求助10
22秒前
xy发布了新的文献求助10
24秒前
duoduo发布了新的文献求助10
24秒前
25秒前
29秒前
30秒前
35秒前
淡定从凝发布了新的文献求助10
36秒前
脑洞疼应助Theeminions采纳,获得10
40秒前
41秒前
kabukabu发布了新的文献求助10
42秒前
13完成签到,获得积分10
43秒前
香蕉觅云应助美好的千愁采纳,获得10
44秒前
45秒前
牛奶秋刀鱼完成签到,获得积分10
46秒前
维维完成签到 ,获得积分10
48秒前
不想开学吧完成签到 ,获得积分10
50秒前
53秒前
kabukabu关注了科研通微信公众号
58秒前
alpaca5完成签到,获得积分10
59秒前
香蕉觅云应助魔幻傲霜采纳,获得10
1分钟前
1分钟前
我爱科研完成签到 ,获得积分10
1分钟前
伯爵的猫完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749