清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Extraction of microRNA–target interaction sentences from biomedical literature by deep learning approach

计算机科学 人工智能 深度学习 机器学习 判决 构造(python库) 随机森林 人工神经网络 关系抽取 支持向量机 自然语言处理 信息抽取 程序设计语言
作者
Mengqi Luo,Shangfu Li,Yuxuan Pang,Lantian Yao,Renfei Ma,Hsi-Yuan Huang,Hsien-Da Huang,Tzong-Yi Lee
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac497
摘要

Abstract MicroRNA (miRNA)–target interaction (MTI) plays a substantial role in various cell activities, molecular regulations and physiological processes. Published biomedical literature is the carrier of high-confidence MTI knowledge. However, digging out this knowledge in an efficient manner from large-scale published articles remains challenging. To address this issue, we were motivated to construct a deep learning-based model. We applied the pre-trained language models to biomedical text to obtain the representation, and subsequently fed them into a deep neural network with gate mechanism layers and a fully connected layer for the extraction of MTI information sentences. Performances of the proposed models were evaluated using two datasets constructed on the basis of text data obtained from miRTarBase. The validation and test results revealed that incorporating both PubMedBERT and SciBERT for sentence level encoding with the long short-term memory (LSTM)-based deep neural network can yield an outstanding performance, with both F1 and accuracy being higher than 80% on validation data and test data. Additionally, the proposed deep learning method outperformed the following machine learning methods: random forest, support vector machine, logistic regression and bidirectional LSTM. This work would greatly facilitate studies on MTI analysis and regulations. It is anticipated that this work can assist in large-scale screening of miRNAs, thereby revealing their functional roles in various diseases, which is important for the development of highly specific drugs with fewer side effects. Source code and corpus are publicly available at https://github.com/qi29.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
25秒前
两个榴莲完成签到,获得积分0
26秒前
36秒前
RLLLLLLL完成签到 ,获得积分10
39秒前
45秒前
yangxi发布了新的文献求助10
50秒前
研友_VZG7GZ应助yangxi采纳,获得10
55秒前
yangxi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
BinBlues完成签到,获得积分10
2分钟前
2分钟前
2分钟前
vicky完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
3分钟前
nuliguan完成签到 ,获得积分10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
fabius0351完成签到 ,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
003发布了新的社区帖子
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863