Effect of Epitope Specific Antibodies on Single Platelet Physiology with Implications for Immune Thrombocytopenia Purpura

血小板 表位 抗体 免疫学 止血 血小板活化 血块回缩 单克隆抗体 纤维蛋白原 医学 内科学 凝血酶
作者
Nina Shaver,Oluwamayokun Oshinowo,Meredith E. Fay,David R. Myers,Wilbur A. Lam
出处
期刊:Blood [Elsevier BV]
卷期号:140 (Supplement 1): 2205-2206
标识
DOI:10.1182/blood-2022-159547
摘要

Background: Platelets play a vital role in both hemostasis and thrombosis and dysfunction thereof may lead to uncontrolled bleeding and clotting. Consequently, patients with Immune Thrombocytopenia Purpura (ITP) exhibit extremely low platelet counts caused by enhanced platelet clearance and destruction due to platelet reactive antibodies. However, even though all patients have thrombocytopenia, only 20 percent of ITP patients develop major bleeding episodes, which cannot be reliably predicted by platelet count alone. While platelet auto-antibodies have been investigated previously, whether epitope-specific antibodies directly affect platelet function remains poorly understood. To that end, we explored the possible physiological impacts of antibodies on single platelet adhesion, spreading, morphology and activation. Because 70% of platelet reactive antibodies in ITP are directed toward the integrin GPIIb/IIIa, we leveraged well-characterized monoclonal antibodies toward GPIIb/IIIa to better understand their physiological effects of platelet-fibrinogen interactions via the assays described above. Overall, we found that antibodies toward GPIIb/IIIa alter the functionality of individual platelets on fibrinogen surfaces in an epitope dependent manner. Most notably, antibodies that bound to either the head or tail region of αIIb (MBC 290.5 and MBC 314.5) increased the percent of platelets expressing phosphatidylserine, when compared to the control and antibodies binding to the head or tail region of βIIIa (AP3, AP5, and Libs 2). However, the mean intensity of this expression was on average much weaker than the βIIIa antibodies. This suggesting differing functional consequences of platelets to various epitopes and in turn could help explain the differing effects antibodies could have in ITP. Methods: Healthy donor platelets were diluted to 10 million/mL in Tyrode's modified HEPES buffer to ensure that single platelets were being measured and to reduce the number of platelet aggregates. These platelets were then incubated and adhered on 100 µg/mL human fibrinogen-coated coverslips for 2 hours in the presence of an antibody toward a selected epitope (Figure 1A). Adhered platelets were then stained with a cell membrane stain and Annexin V (PS exposure), fixed and then imaged with fluorescence microscopy. After imaging, thousands of platelets were then counted and analyzed. The antibody treated platelets were then normalized to the non-treated control. Results: Our preliminary data indicates an epitope-specific effect of antibodies on platelet physiology at the single cell level. Using well-characterized antibodies to various epitopes of GPIIb/IIIa (Figure 1A), we found that when compared to the non-antibody treated control, MBC 290.5 and Libs 2 decreased platelet spreading area by 29% and 31% respectively. However, while MBC 290.5 did not alter platelet density (n/mm²) Libs 2 enhanced platelet adhesion by increasing platelet density by 85%. This indicates the possible decrease in functionality of platelets treated with MBC 290.5. Additionally, both MBC 290.5 and MBC 314.5 increased the percentage of platelets that exposed PS by 97% and 87%, respectively, while AP3 and Libs 2 decreased the percentage of PS-exposed platelets by 64% and 49% respectively. Interestingly, although there was a decrease in the percent PS-exposed platelets, the mean intensity of the platelets that were PS exposed was much greater than the control with an increase of 360% and 228% respectively (Figure 1B). Conclusion: Although auto-antibodies cause platelet clearance, leading to low platelet counts, little is understood about the possible ramifications of antibodies on platelet behavior. Importantly, we show here that antibodies have a physiological consequence on platelets and different epitope-specific antibodies exhibit unique signatures for altering single platelet physiology, which could help explain how patients with ITP have varying clinical presentations. Figure 1View largeDownload PPTFigure 1View largeDownload PPT Close modal

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理宛秋完成签到 ,获得积分10
刚刚
ryan1300完成签到 ,获得积分10
4秒前
ll完成签到 ,获得积分10
6秒前
JAYZHANG完成签到,获得积分10
7秒前
木子李完成签到,获得积分10
9秒前
耶椰耶完成签到 ,获得积分10
14秒前
松柏完成签到 ,获得积分10
14秒前
17秒前
酷酷小子完成签到 ,获得积分10
18秒前
天水张家辉完成签到,获得积分10
19秒前
月涵完成签到 ,获得积分10
20秒前
hebhm完成签到,获得积分10
23秒前
26秒前
行走的猫完成签到 ,获得积分10
28秒前
小北完成签到 ,获得积分10
29秒前
研友_VZGVzn完成签到,获得积分10
31秒前
浮游应助lsy采纳,获得10
32秒前
qiaoxi完成签到,获得积分10
33秒前
一一完成签到 ,获得积分10
33秒前
JAJ完成签到 ,获得积分10
36秒前
皓轩完成签到 ,获得积分10
39秒前
感性的神级完成签到,获得积分10
41秒前
慧慧完成签到,获得积分10
41秒前
JYY完成签到 ,获得积分10
42秒前
共享精神应助科研通管家采纳,获得10
43秒前
巴达天使完成签到,获得积分10
48秒前
知行完成签到,获得积分10
52秒前
hwa完成签到,获得积分10
54秒前
hhh完成签到,获得积分10
55秒前
liu完成签到 ,获得积分10
56秒前
清茶旧友完成签到,获得积分10
57秒前
bing发布了新的文献求助10
57秒前
zhong完成签到,获得积分10
59秒前
darcy完成签到,获得积分10
59秒前
三清小爷完成签到,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
Grinder完成签到 ,获得积分10
1分钟前
suntong完成签到,获得积分10
1分钟前
1分钟前
kana完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570645
求助须知:如何正确求助?哪些是违规求助? 3992150
关于积分的说明 12356767
捐赠科研通 3664836
什么是DOI,文献DOI怎么找? 2019780
邀请新用户注册赠送积分活动 1054198
科研通“疑难数据库(出版商)”最低求助积分说明 941775