格拉米安矩阵
西尔维斯特方程
数学
可控性
应用数学
秩(图论)
还原(数学)
西尔维斯特矩阵
平方根
控制理论(社会学)
数学优化
计算机科学
数学分析
可控性
特征向量
人工智能
组合数学
几何学
控制(管理)
多项式矩阵
物理
矩阵多项式
多项式的
量子力学
出处
期刊:Symmetry
[MDPI AG]
日期:2022-11-13
卷期号:14 (11): 2400-2400
摘要
In this paper, we explore model order reduction for large-scale square descriptor systems. A balancing-free square-root method is proposed. The balancing-free square-root method is based on two cross Gramians, one of which is known as the proper cross Gramian and the other as the improper cross Gramian. The proper cross Gramian is the unique solution of a projected generalized continuous-time Sylvester equation, and the improper cross Gramian solves a projected generalized discrete-time Sylvester equation. In order to compute the low-rank factors of these two cross Gramians, we extend the low-rank iteration of the alternating direction implicit method and the Smith method to the projected generalized Sylvester equations. We illustrate the effectiveness of the balance truncation method with one numerical example.
科研通智能强力驱动
Strongly Powered by AbleSci AI