内分泌系统
毒性
乳腺癌
核受体
癌症研究
受体
癌基因
雌激素受体α
癌症
雌激素受体
生物
生物信息学
药理学
内科学
激素
医学
内分泌学
转录因子
生物化学
基因
细胞周期
作者
Mei Guan,Guanpeng Qi,Zuojing Li,Xiaohong Hou
标识
DOI:10.1080/02772248.2023.2212827
摘要
Of 47 endocrine-disrupting chemicals (EDCs) collected from literature and related to breast cancer, not all were tested in a toxicity forecaster (ToxCast) program of the US-Environmental Protection Agency (EPA). Therefore, deep learning models based on the toxicity data in that database have been used to predict the molecular toxicity of the untested EDCs. Combined with the values of median lethal doses (LDs), six potential targets of EDCs related to breast cancer have been identified, viz. MYC proto-oncogene, urokinase plasminogen activator receptor (PLAUR), cytochrome P450 4 A 11, nuclear receptor 1 H 2 (NR1H2), peroxisome proliferator-activated receptor alpha (PPARA), and hypoxia-inducible factor 1 alpha (HIF1A).
科研通智能强力驱动
Strongly Powered by AbleSci AI