Breast Cancer Prognostic Hub Genes Identified by Integrated Transcriptomic and Weighted Network Analysis: A Road Toward Personalized Medicine

基因 转录组 个性化医疗 乳腺癌 表型 生物 计算生物学 精密医学 生物信息学 遗传学 癌症 基因表达
作者
Prithvi Singh,Aanchal Rathi,Rashmi Minocha,Anuradha Sinha,Mohammad Mahfuzul Haque,Md. Imtaiyaz Hassan,Ravins Dohare
出处
期刊:Omics A Journal of Integrative Biology [Mary Ann Liebert]
卷期号:27 (5): 227-236 被引量:1
标识
DOI:10.1089/omi.2023.0033
摘要

Breast cancer (BC) is the second-most common type and among the leading causes of worldwide cancer-related deaths. There is marked person-to-person variability in susceptibility to, and phenotypic expression and prognosis of BC, a predicament that calls for personalized medicine and individually tailored therapeutics. In this study, we report new observations on prognostic hub genes and key pathways involved in BC. We used the data set GSE109169, comprising 25 pairs of BC and adjacent normal tissues. Using a high-throughput transcriptomic approach, we selected data on 293 differentially expressed genes to establish a weighted gene coexpression network. We identified three age-linked modules where the light-gray module strongly correlated with BC. Based on the gene significance and module membership features, peptidase inhibitor 15 (PI15) and KRT5 were identified as our hub genes from the light-gray module. These genes were further verified at transcriptional and translational levels across 25 pairs of BC and adjacent normal tissues. Their promoter methylation profiles were assessed based on various clinical parameters. In addition, these hub genes were used for Kaplan–Meier survival analysis, and their correlation with tumor-infiltrating immune cells was investigated. We found that PI15 and KRT5 may be potential biomarkers and potential drug targets. These findings call for future research in a larger sample size, which could inform diagnosis and clinical management of BC, thus paving the way toward personalized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
Hello应助cora采纳,获得10
2秒前
汉唐精彩完成签到,获得积分10
3秒前
3秒前
4秒前
田茂青完成签到,获得积分10
4秒前
damian发布了新的文献求助30
4秒前
4秒前
聪明芒果完成签到,获得积分10
4秒前
Vvvvvvv应助虫二先生采纳,获得10
4秒前
西大研究生完成签到 ,获得积分10
4秒前
5秒前
5秒前
呆呆完成签到,获得积分10
5秒前
左一酱完成签到 ,获得积分10
6秒前
平淡南霜发布了新的文献求助10
6秒前
Sweet关注了科研通微信公众号
6秒前
6秒前
赘婿应助wangfu采纳,获得10
7秒前
7秒前
7秒前
pipge完成签到,获得积分20
7秒前
8秒前
澳澳发布了新的文献求助10
8秒前
9秒前
清脆的映天完成签到,获得积分10
9秒前
yl驳回了sweetbearm应助
9秒前
隐形曼青应助2鱼采纳,获得10
9秒前
通~发布了新的文献求助10
9秒前
香蕉觅云应助junzilan采纳,获得10
10秒前
张老涵发布了新的文献求助10
10秒前
灌饼发布了新的文献求助30
10秒前
罗实发布了新的文献求助10
10秒前
张张发布了新的文献求助10
11秒前
木香发布了新的文献求助10
11秒前
朴实以松发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794