Motor Imagery EEG Classification Based on a Weighted Multi-Branch Structure Suitable for Multisubject Data

脑电图 运动表象 人工智能 计算机科学 模式识别(心理学) 深度学习 脑-机接口 机器学习 心理学 精神科
作者
H. Y. Wang,Jiuchuan Jiang,John Q. Gan,Haixian Wang
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:70 (11): 3040-3051 被引量:1
标识
DOI:10.1109/tbme.2023.3274231
摘要

Electroencephalogram (EEG) signal recognition based on deep learning technology requires the support of sufficient data. However, training data scarcity usually occurs in subject-specific motor imagery tasks unless multisubject data can be used to enlarge training data. Unfortunately, because of the large discrepancies between data distributions from different subjects, model performance could only be improved marginally or even worsened by simply training on multisubject data.This article proposes a novel weighted multi-branch (WMB) structure for handling multisubject data to solve the problem, in which each branch is responsible for fitting a pair of source-target subject data and adaptive weights are used to integrate all branches or select branches with the largest weights to make the final decision. The proposed WMB structure was applied to six well-known deep learning models (EEGNet, Shallow ConvNet, Deep ConvNet, ResNet, MSFBCNN, and EEG_TCNet) and comprehensive experiments were conducted on EEG datasets BCICIV-2a, BCICIV-2b, high gamma dataset (HGD) and two supplementary datasets.Superior results against the state-of-the-art models have demonstrated the efficacy of the proposed method in subject-specific motor imagery EEG classification. For example, the proposed WMB_EEGNet achieved classification accuracies of 84.14%, 90.23%, and 97.81% on BCICIV-2a, BCICIV-2b and HGD, respectively.It is clear that the proposed WMB structure is capable to make good use of multisubject data with large distribution discrepancies for subject-specific EEG classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghost202发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
yana应助一出生就是美钕采纳,获得10
3秒前
4秒前
淡淡梦容发布了新的文献求助10
4秒前
闪电发布了新的文献求助10
4秒前
sdl发布了新的文献求助10
5秒前
灵魂发布了新的文献求助10
5秒前
Miianlli完成签到 ,获得积分10
5秒前
沉默的婴发布了新的文献求助10
6秒前
6秒前
yao完成签到,获得积分10
6秒前
6秒前
7秒前
自由伊完成签到,获得积分10
7秒前
library2025完成签到,获得积分10
9秒前
yimi发布了新的文献求助10
9秒前
ani完成签到,获得积分10
10秒前
稳重之双发布了新的文献求助10
10秒前
研友_aLjxNZ发布了新的文献求助20
10秒前
hlc完成签到,获得积分10
10秒前
10秒前
海马成长痛完成签到,获得积分10
11秒前
11秒前
sunianjinshi完成签到,获得积分10
11秒前
露亮发布了新的文献求助10
12秒前
12秒前
asmber关注了科研通微信公众号
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
自然怀寒完成签到,获得积分10
14秒前
15秒前
Summer夏天完成签到,获得积分10
15秒前
小二郎应助闪电采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774104
求助须知:如何正确求助?哪些是违规求助? 3319757
关于积分的说明 10196865
捐赠科研通 3034369
什么是DOI,文献DOI怎么找? 1664961
邀请新用户注册赠送积分活动 796461
科研通“疑难数据库(出版商)”最低求助积分说明 757490