Development, Evaluation, and Application of Machine Learning Models for Accurate Prediction of Root Uptake of Per- and Polyfluoroalkyl Substances

作物 贝叶斯网络 环境科学 土壤科学 化学 计算机科学 环境化学 机器学习 农学 生物
作者
Lei Xiang,Jing Qiu,Qian-Qi Chen,Pengfei Yu,Bailin Liu,Hai-Ming Zhao,Yan-Wen Li,Nai-Xian Feng,Quan-Ying Cai,Ce-Hui Mo,Qing X. Li
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18317-18328 被引量:35
标识
DOI:10.1021/acs.est.2c09788
摘要

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶子发布了新的文献求助10
1秒前
赘婿应助HUU采纳,获得10
1秒前
搜集达人应助罗氏集团采纳,获得10
1秒前
3秒前
3秒前
Nemo完成签到 ,获得积分10
4秒前
Rondab应助山海树灵采纳,获得10
5秒前
skylinewjw完成签到,获得积分20
5秒前
团结紧张严肃活泼完成签到,获得积分10
6秒前
加油发布了新的文献求助10
7秒前
7秒前
汉堡包应助无辜的白秋采纳,获得10
8秒前
思源应助罗氏集团采纳,获得10
8秒前
科研通AI5应助叶子采纳,获得10
9秒前
田様应助新手鼓手采纳,获得10
10秒前
无奈的晴发布了新的文献求助10
11秒前
怕孤独的鹭洋完成签到,获得积分10
12秒前
UUU发布了新的文献求助100
12秒前
12秒前
牙瓜完成签到 ,获得积分10
12秒前
zhuyy完成签到,获得积分10
13秒前
ljz完成签到,获得积分10
14秒前
CipherSage应助阿槿采纳,获得10
14秒前
沉默的婴完成签到 ,获得积分10
14秒前
小二完成签到,获得积分10
15秒前
超帅的又槐完成签到,获得积分10
16秒前
17秒前
HUU完成签到,获得积分10
18秒前
emilybei完成签到,获得积分10
19秒前
19秒前
19秒前
思源应助小鹅采纳,获得10
19秒前
加油完成签到,获得积分10
20秒前
lizhaoyu发布了新的文献求助10
20秒前
vv的平行宇宙完成签到,获得积分10
20秒前
21秒前
22秒前
大模型应助满意语风采纳,获得10
22秒前
22秒前
阿槿完成签到,获得积分20
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998569
求助须知:如何正确求助?哪些是违规求助? 3538078
关于积分的说明 11273314
捐赠科研通 3277023
什么是DOI,文献DOI怎么找? 1807331
邀请新用户注册赠送积分活动 883825
科研通“疑难数据库(出版商)”最低求助积分说明 810070