Development, Evaluation, and Application of Machine Learning Models for Accurate Prediction of Root Uptake of Per- and Polyfluoroalkyl Substances

作物 贝叶斯网络 环境科学 土壤科学 化学 计算机科学 环境化学 机器学习 农学 生物
作者
Lei Xiang,Jing Qiu,Qian-Qi Chen,Pengfei Yu,Bailin Liu,Hai-Ming Zhao,Yan-Wen Li,Nai-Xian Feng,Quan-Ying Cai,Ce-Hui Mo,Qing X. Li
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18317-18328 被引量:48
标识
DOI:10.1021/acs.est.2c09788
摘要

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追风发布了新的文献求助10
刚刚
刚刚
希望天下0贩的0应助lin采纳,获得10
刚刚
何小芳完成签到,获得积分10
1秒前
俏皮的聪展完成签到,获得积分10
2秒前
苏习习发布了新的文献求助10
2秒前
2秒前
2秒前
hangjias完成签到 ,获得积分10
3秒前
大模型应助陈思思采纳,获得10
3秒前
如意的冬瓜关注了科研通微信公众号
3秒前
星辰大海应助于沁冉采纳,获得10
4秒前
星河完成签到,获得积分10
4秒前
烟花应助董先生采纳,获得10
4秒前
4秒前
4秒前
FashionBoy应助淡淡的卿采纳,获得10
4秒前
0517完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
dxxcshin完成签到,获得积分10
6秒前
6秒前
7秒前
水123发布了新的文献求助10
7秒前
露露发布了新的文献求助10
8秒前
hey应助zake采纳,获得20
8秒前
江海小舟完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
贤惠的伟泽完成签到,获得积分10
10秒前
无奈擎苍完成签到,获得积分10
10秒前
lin完成签到,获得积分10
10秒前
勇者义彦发布了新的文献求助10
10秒前
科研通AI6应助三冬四夏采纳,获得10
11秒前
11秒前
11秒前
沉默的从安完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283