同种类的
水消毒
重新使用
饮用水净化
纳米技术
污染
材料科学
环境科学
工艺工程
化学工程
环境工程
废物管理
物理
工程类
热力学
生物
生态学
作者
Tong Wu,Bofei Liu,Chong Liu,Jiayu Wan,Ankun Yang,Kai Liu,Feifei Shi,Jie Zhao,Zhiyi Lu,Guangxu Chen,Allen Pei,Harold Y. Hwang,Yi Cui
标识
DOI:10.1038/s44221-023-00079-4
摘要
Although heterogeneous water disinfection can avoid secondary pollution and other shortcomings in homogeneous systems, its low disinfection efficiency seriously hinders its development. Here we successfully address the aforementioned issues of heterogeneous disinfection by developing discrete nanoflakes of (Al2O3@v-MoS2)/Cu/Fe3O4. Three exciting features are integrated into such a novel structure: bifacial vertically aligned nanofingerprint MoS2 grown on both sides of the light-transparent Al2O3 nanoflakes that can largely absorb sunlight, where both sides can operate simultaneously; a Cu-MoS2 junction that enhances charge separation for the efficient generation of reactive oxygen species; and magnetic Fe3O4 nanoparticles that have magnetic separation capability and conveniently regenerate after disinfection. The (Al2O3@v-MoS2)/Cu/Fe3O4 nanostructures reported herein exhibit outstanding water disinfection with thorough inactivation of over 5.7 log10 colony-forming units ml−1 Escherichia coli within 1 min in real sunlight (the system thermal effect has little impact on disinfection performances) as well as facile separation and stable long cycle reuse, demonstrating broad application prospects. Heterogeneous water disinfection is a promising way to avoid secondary pollution, but it is not very efficient. The development of nanoflakes shows that a much higher efficiency than previously achieved can be achieved through solar-driven heterogeneous disinfection.
科研通智能强力驱动
Strongly Powered by AbleSci AI