Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR

弹道 行人 计算机科学 碰撞 激光雷达 特征(语言学) 人工智能 数据挖掘 运输工程 工程类 地理 遥感 计算机安全 语言学 哲学 物理 天文
作者
Shanglian Zhou,Hao Xu,Guohui Zhang,Tianwei Ma,Yin Yang
出处
期刊:Journal of Intelligent Transportation Systems [Informa]
卷期号:: 1-13 被引量:3
标识
DOI:10.1080/15472450.2023.2209912
摘要

AbstractAbstractIn recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated the research and development in pedestrian trajectory prediction and risk assessment. One of the critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing behavior and uncertainties in vehicle-pedestrian interactions. This paper proposes a deep learning-based method for pedestrian trajectory prediction and risk assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the future time step. In the experimental study, the root-mean-square errors between the predicted and ground truth x and y coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology on pedestrian trajectory prediction and risk assessment.Keywords: Deep learningLong Short-Term Memory (LSTM) networkpedestrian trajectory predictionrisk assessmentroadside LiDAR datavulnerable road user (VRU) AcknowledgmentsThe authors would like to thank the Transportation Research Board (TRB) committee AED50: Artificial Intelligence and Advanced Computing Applications for organizing the 2022 Transportation Forecasting (TRANSFOR 22) Competition. The authors would also like to thank the Center for Urban Informatics and Progress (CUIP) at The University of Tennessee at Chattanooga (UTC), National Science Foundation (NSF), City of Chattanooga, Ouster LiDAR, and Seoul Robotics for sponsoring the competition and providing the data.Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
医平青云完成签到 ,获得积分10
2秒前
蛋妮完成签到 ,获得积分10
6秒前
wenhuanwenxian完成签到 ,获得积分10
6秒前
打打应助FUNG采纳,获得10
7秒前
等待戈多完成签到,获得积分10
7秒前
shiyang2014完成签到,获得积分10
10秒前
CLTTT完成签到,获得积分10
13秒前
人类繁殖学完成签到 ,获得积分10
26秒前
大大蕾完成签到 ,获得积分10
28秒前
在水一方完成签到 ,获得积分0
31秒前
最美夕阳红完成签到,获得积分10
32秒前
心随以动完成签到 ,获得积分10
37秒前
40秒前
修辛完成签到 ,获得积分10
42秒前
简单幸福完成签到 ,获得积分10
46秒前
victory_liu完成签到,获得积分10
47秒前
榆木小鸟完成签到 ,获得积分10
55秒前
59秒前
七七完成签到 ,获得积分10
1分钟前
1分钟前
Danny完成签到 ,获得积分10
1分钟前
酷波er应助WW采纳,获得10
1分钟前
竹筏过海应助reflux采纳,获得100
1分钟前
没时间解释了完成签到 ,获得积分10
1分钟前
1分钟前
小哲子发布了新的文献求助10
1分钟前
刻苦的新烟完成签到 ,获得积分10
1分钟前
爆米花应助小哲子采纳,获得10
1分钟前
美好灵寒完成签到 ,获得积分10
1分钟前
平平平平完成签到 ,获得积分10
1分钟前
1分钟前
小哲子完成签到,获得积分10
1分钟前
Skywalker完成签到,获得积分10
2分钟前
2分钟前
2分钟前
胜胜糖完成签到 ,获得积分10
2分钟前
WW发布了新的文献求助10
2分钟前
是小小李哇完成签到 ,获得积分10
2分钟前
初夏完成签到 ,获得积分10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793684
关于积分的说明 7807147
捐赠科研通 2450016
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350