Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR

弹道 行人 计算机科学 碰撞 激光雷达 特征(语言学) 人工智能 数据挖掘 运输工程 工程类 地理 遥感 计算机安全 语言学 物理 哲学 天文
作者
Shanglian Zhou,Hao Xu,Guohui Zhang,Tianwei Ma,Yin Yang
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:28 (6): 793-805 被引量:8
标识
DOI:10.1080/15472450.2023.2209912
摘要

In recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated the research and development in pedestrian trajectory prediction and risk assessment. One of the critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing behavior and uncertainties in vehicle-pedestrian interactions. This paper proposes a deep learning-based method for pedestrian trajectory prediction and risk assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the future time step. In the experimental study, the root-mean-square errors between the predicted and ground truth x and y coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology on pedestrian trajectory prediction and risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
疯尤金发布了新的文献求助100
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
加缪应助科研通管家采纳,获得30
2秒前
共享精神应助鸭鸭采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
兜兜应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wop111应助科研通管家采纳,获得20
2秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Gxmmmm_应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
生动梦松应助科研通管家采纳,获得150
3秒前
万事顺意完成签到 ,获得积分10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
Mars_X发布了新的文献求助10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
思源应助臭弟弟你别摆了采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
小马甲应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4921521
求助须知:如何正确求助?哪些是违规求助? 4192717
关于积分的说明 13022872
捐赠科研通 3964097
什么是DOI,文献DOI怎么找? 2172871
邀请新用户注册赠送积分活动 1190512
关于科研通互助平台的介绍 1099711