亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning-based pedestrian trajectory prediction and risk assessment at signalized intersections using trajectory data captured through roadside LiDAR

弹道 行人 计算机科学 碰撞 激光雷达 特征(语言学) 人工智能 数据挖掘 运输工程 工程类 地理 遥感 计算机安全 语言学 物理 哲学 天文
作者
Shanglian Zhou,Hao Xu,Guohui Zhang,Tianwei Ma,Yin Yang
出处
期刊:Journal of Intelligent Transportation Systems [Taylor & Francis]
卷期号:28 (6): 793-805 被引量:4
标识
DOI:10.1080/15472450.2023.2209912
摘要

In recent years, rapid advancements in the Autonomous Vehicles (AVs) industry have greatly motivated the research and development in pedestrian trajectory prediction and risk assessment. One of the critical requirements for AVs is to predict the future trajectories of pedestrians and provide collision warnings in an accurate and prompt manner. Nevertheless, accurate prediction of pedestrian trajectories remains a technical challenge, mainly caused by the heterogeneity of pedestrian crossing behavior and uncertainties in vehicle-pedestrian interactions. This paper proposes a deep learning-based method for pedestrian trajectory prediction and risk assessment, using trajectory data extracted from roadside LiDAR data and corresponding signal phasing information at MLK and Georgia Avenue in Chattanooga, TN. Meanwhile, a set of criteria referred to as the risk factor is established to quantitatively evaluate the risk of the pedestrian crossing behavior, which also serves as a learnable feature. A Long Short-Term Memory (LSTM) network is proposed, which takes the following data as the input: the pedestrian trajectory data, signal phasing data, and risk factors from the past 10 steps. Meanwhile, the network predicts the pedestrian trajectory and risk factor at the future time step. In the experimental study, the root-mean-square errors between the predicted and ground truth x and y coordinates are 0.225 meters and 0.377 meters, respectively, and the F1 score value for the risk factor is 99.6%, demonstrating the efficacy of the proposed LSTM-based methodology on pedestrian trajectory prediction and risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
耍酷寻双完成签到 ,获得积分10
5秒前
杏子完成签到,获得积分10
10秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
16秒前
19秒前
小新小新完成签到 ,获得积分10
23秒前
24秒前
Shicheng完成签到,获得积分10
26秒前
37秒前
CF发布了新的文献求助10
42秒前
50秒前
科研通AI2S应助CF采纳,获得10
54秒前
汉堡包应助满意的世界采纳,获得50
1分钟前
1分钟前
1分钟前
豆豆完成签到,获得积分10
1分钟前
科研通AI2S应助满意的世界采纳,获得10
2分钟前
CF完成签到 ,获得积分10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
shixueshashou完成签到,获得积分10
3分钟前
4分钟前
muhum完成签到 ,获得积分10
4分钟前
Sandy应助科研通管家采纳,获得20
4分钟前
大气建辉完成签到 ,获得积分10
4分钟前
真真完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
思源应助彼岸花开采纳,获得200
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965717
求助须知:如何正确求助?哪些是违规求助? 3510950
关于积分的说明 11155690
捐赠科研通 3245416
什么是DOI,文献DOI怎么找? 1792876
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804216