Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?

基于策略的路由 计算机科学 静态路由 多路径路由 链路状态路由协议 计算机网络 动态源路由 布线(电子设计自动化) 异构网络 分布式计算 路由域 路由协议 无线网络 电信 无线
作者
Xiaoxuan Xie,Jialei Zhang,Zheng Yan,Haiguang Wang,Tieyan Li
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:38 (1): 210-218 被引量:1
标识
DOI:10.1109/mnet.131.2200488
摘要

With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte- HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
民兵葛二蛋完成签到,获得积分10
刚刚
龙龙完成签到,获得积分10
1秒前
Youlu发布了新的文献求助10
2秒前
_ban发布了新的文献求助10
3秒前
111完成签到,获得积分20
3秒前
1111完成签到,获得积分10
3秒前
4秒前
4秒前
小红书求接接接接一篇完成签到,获得积分10
4秒前
4秒前
BulingBuling发布了新的文献求助10
5秒前
大方的云朵完成签到,获得积分10
6秒前
酷波er应助赵云采纳,获得10
8秒前
lulu完成签到,获得积分10
8秒前
9秒前
9秒前
dxftx完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
冷静新烟发布了新的文献求助10
12秒前
dxftx发布了新的文献求助10
13秒前
Hello应助niiiiii采纳,获得10
13秒前
赘婿应助橘子柚子采纳,获得10
13秒前
13秒前
糊涂涂完成签到,获得积分10
13秒前
zhuangzhu发布了新的文献求助10
14秒前
14秒前
14秒前
16秒前
16秒前
打打应助Aurora采纳,获得10
17秒前
17秒前
充电宝应助longer采纳,获得10
17秒前
18秒前
11完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助30
19秒前
19秒前
活泼的寒云完成签到,获得积分10
19秒前
zpp发布了新的文献求助30
20秒前
朴素沛山完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256