Can Routing Be Effectively Learned in Integrated Heterogeneous Networks?

基于策略的路由 计算机科学 静态路由 多路径路由 链路状态路由协议 计算机网络 动态源路由 布线(电子设计自动化) 异构网络 分布式计算 路由域 路由协议 无线网络 电信 无线
作者
Xiaoxuan Xie,Jialei Zhang,Zheng Yan,Haiguang Wang,Tieyan Li
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:38 (1): 210-218 被引量:1
标识
DOI:10.1109/mnet.131.2200488
摘要

With the advent of 5G and facing future 6G, various networks tend to be linked together to form an integrated heterogeneous network (Inte-HetNets). Inte-HetNets bring new challenges to routing due to the need of crossing multiple network domains. Traditional routing methods are formidable to effectively support routing in Inte-HetNets. Machine learning is regarded as an promising technology to achieve such a goal, which has attracted efforts of many researchers. However, the literature still lacks a review on current research advance. In this paper, we review existing intelligent routing schemes based on machine learning in Inte-HetNets. We first introduce mainstream machine learning methods applied into routing. Then, we provide a taxonomy of learning-empowered routing schemes in Inte- HetNets by classifying them into three types based on routing scenarios: routing in ad hoc networks, routing in fixed backbone networks, and routing across network domains. Subsequently, we propose a set of requirements on learning-empowered routing in Inte-HetNets and employ these requirements to review the current literature. Finally, we explore several open issues based on our review and indicate future research directions of intelligent routing in Inte-HetNets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jzhang应助丙队长采纳,获得10
3秒前
4秒前
GXY发布了新的文献求助30
5秒前
Lucas应助专注秋尽采纳,获得10
5秒前
5秒前
754完成签到,获得积分10
5秒前
8秒前
学习猴发布了新的文献求助10
8秒前
充电宝应助炙热的如柏采纳,获得10
9秒前
所所应助qzaima采纳,获得10
9秒前
米兰达完成签到 ,获得积分0
10秒前
xg发布了新的文献求助10
12秒前
Loooong应助Ni采纳,获得10
13秒前
13秒前
WZ0904发布了新的文献求助10
13秒前
顾矜应助博ge采纳,获得10
15秒前
15秒前
Lotus发布了新的文献求助10
16秒前
17秒前
仁爱仙人掌完成签到,获得积分10
19秒前
ywang发布了新的文献求助10
19秒前
21秒前
21秒前
21秒前
ewqw关注了科研通微信公众号
22秒前
曦小蕊完成签到 ,获得积分10
22秒前
23秒前
24秒前
24秒前
奋斗灵波发布了新的文献求助10
24秒前
药学牛马发布了新的文献求助10
24秒前
24秒前
科研通AI5应助WZ0904采纳,获得10
25秒前
叶未晞yi发布了新的文献求助10
26秒前
ipeakkka发布了新的文献求助10
27秒前
Jzhang应助迷人的映雁采纳,获得10
27秒前
27秒前
zzz完成签到,获得积分10
28秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824