强化学习
计算机科学
波束赋形
频道(广播)
高效能源利用
能量(信号处理)
弹道
实时计算
人工智能
计算机网络
电信
工程类
电气工程
数学
统计
物理
天文
作者
Mau‐Luen Tham,Yi Jie Wong,Amjad Iqbal,Nordin Ramli,Yongxu Zhu,Tasos Dagiuklas
标识
DOI:10.1109/wcnc55385.2023.10118891
摘要
This paper investigates the physical layer security (PLS) issue in reconfigurable intelligent surface (RIS) aided millimeter-wave rotary-wing unmanned aerial vehicle (UAV) communications under the presence of multiple eavesdroppers and imperfect channel state information (CSI). The goal is to maximize the worst-case secrecy energy efficiency (SEE) of UAV via a joint optimization of flight trajectory, UAV active beamforming and RIS passive beamforming. By interacting with the dynamically changing UAV environment, real-time decision making per time slot is possible via deep reinforcement learning (DRL). To decouple the continuous optimization variables, we introduce a twin- twin-delayed deep deterministic policy gradient (TTD3) to maximize the expected cumulative reward, which is linked to SEE enhancement. Simulation results confirm that the proposed method achieves greater secrecy energy savings than the traditional twin-deep deterministic policy gradient DRL (TDDRL)-based method.
科研通智能强力驱动
Strongly Powered by AbleSci AI