清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A context-aware deconfounding autoencoder for robust prediction of personalized clinical drug response from cell-line compound screening

自编码 稳健性(进化) 背景(考古学) 计算机科学 个性化医疗 癌细胞系 人工智能 药品 机器学习 编码(集合论) 医学 生物信息学 药理学 深度学习 生物 癌症 内科学 癌细胞 程序设计语言 集合(抽象数据类型) 古生物学 基因 生物化学
作者
Di He,Qiao Liu,You Wu,Lei Xie
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (10): 879-892 被引量:35
标识
DOI:10.1038/s42256-022-00541-0
摘要

Abstract Accurate and robust prediction of patient-specific responses to a new compound is critical to personalized drug discovery and development. However, patient data are often too scarce to train a generalized machine learning model. Although many methods have been developed to utilize cell-line screens for predicting clinical responses, their performances are unreliable owing to data heterogeneity and distribution shift. Here we have developed a novel context-aware deconfounding autoencoder (CODE-AE) that can extract intrinsic biological signals masked by context-specific patterns and confounding factors. Extensive comparative studies demonstrated that CODE-AE effectively alleviated the out-of-distribution problem for the model generalization and significantly improved accuracy and robustness over state-of-the-art methods in predicting patient-specific clinical drug responses purely from cell-line compound screens. Using CODE-AE, we screened 59 drugs for 9,808 patients with cancer. Our results are consistent with existing clinical observations, suggesting the potential of CODE-AE in developing personalized therapies and drug response biomarkers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY关闭了YY文献求助
3秒前
量子星尘发布了新的文献求助10
11秒前
44秒前
超男完成签到 ,获得积分10
52秒前
CUN完成签到,获得积分10
1分钟前
猫猫i完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
YY驳回了打打应助
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Qian完成签到 ,获得积分10
2分钟前
白天亮完成签到,获得积分10
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
3分钟前
游鱼完成签到,获得积分10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇完成签到 ,获得积分10
3分钟前
3分钟前
什么也难不倒我完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
YY给YY的求助进行了留言
4分钟前
缓慢的忆枫完成签到,获得积分20
4分钟前
zpc猪猪完成签到,获得积分10
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
文献搬运工完成签到 ,获得积分10
5分钟前
GIA完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
陶世立完成签到 ,获得积分10
7分钟前
轻松的甜瓜完成签到,获得积分10
7分钟前
直率的笑翠完成签到 ,获得积分10
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
nojego完成签到,获得积分10
7分钟前
光合作用完成签到,获得积分10
7分钟前
8分钟前
8分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015250
求助须知:如何正确求助?哪些是违规求助? 3555212
关于积分的说明 11317932
捐赠科研通 3288595
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983