吻合
小猎犬
材料科学
极限抗拉强度
体内
生物医学工程
镁合金
镁
外科
医学
内科学
冶金
生物
生物技术
作者
Yue Zhang,Jian Cao,Mengmeng Lu,Yi Shao,Kewei Jiang,Xiaodong Yang,Xiaoyu Xiong,Shan Wang,Chenglin Chu,Feng Xue,Yingjiang Ye,Jing Bai
标识
DOI:10.1016/j.bioactmat.2022.09.023
摘要
Staplers have been widely used in the clinical treatment of gastrointestinal reconstruction. However, the current titanium (Ti) staple will remain in the human body permanently, resulting in some adverse effects. In this study, we developed a type of biodegradable staple for colonic anastomosis using 0.3 mm diameter magnesium (Mg) alloy wires. The wire surface was modified by micro-arc oxidation treatment (MAO) and then coated with poly-l-lactic acid (PLLA) to achieve a moderate degradation rate matching the tissue healing process. The results of tensile tests on isolated porcine colon tissue anastomosed by Mg and Ti staples showed that the anastomotic property of Mg staples was almost equal to that of Ti staples. The in vitro degradation tests indicated the dual-layer coating effectively enhanced the corrosion resistance and maintained the tensile force of the coated staple stable after 14-day immersion in the simulated colonic fluid (SCF). Furthermore, 24 beagle dogs were employed to conduct a comparison experiment using Mg-based and clinical Ti staples for 90-day implantation by ent-to-side anastomosis of the colon. The integrated structure of Mg-based staples was observed after 7 days and completely degraded after 90 days. All animals did not have anastomotic leakage and stenosis, and 12 dogs with Mg-based staples fully recovered after 90 days without differences in visceral ion levels and other side effects. The favorable performance makes this Mg-based anastomotic staple an ideal candidate for colon reconstruction.
科研通智能强力驱动
Strongly Powered by AbleSci AI