Wnt信号通路
牙周膜干细胞
间充质干细胞
细胞生物学
连环素
信号转导
炎症
化学
外体
连环蛋白
NF-κB
微泡
癌症研究
免疫学
生物
小RNA
生物化学
碱性磷酸酶
酶
基因
作者
Yingzhe Hu,Zhiguo Wang,Chun Fan,Pengyu Gao,Wenxuan Wang,Yutong Xie,Quanchen Xu
摘要
To examine the immunomodulatory effect of exosomes originating from gingival mesenchymal stem cells (GMSC-Exo) on periodontal bone regeneration and its role in the regulation of the nuclear-factor kappaB (NF-κB) and Wnt/β-catenin pathways in the periodontal inflammatory microenvironment.First, periodontal ligament stem cells (PDLSCs) were treated with GMSC-Exo or Porphyromonas gingivalis-derived lipopolysaccharide (P.g-LPS) in vitro. Quantitative real-time PCR (qRT-PCR) and western blot were carried out to detect the expressions of osteogenic differentiation-related factors in cells. Further, PDLSCs were treated with P.g-LPS or inhibitors. The expression of NF-κB pathway-related factors as well as of Wnt/β-catenin pathway-related factors were detected by qRT-PCR and western blot.GMSC-Exo treatment promoted the expression of osteogenic differentiation-related factors within PDLSCs in both normal and inflammatory environments. Further investigations showed that GMSC-Exo could also inhibit the P.g-LPS-induced activation of the NF-κB pathway, leading to the up-regulation of the Wnt/β-catenin pathway. When the Wnt/β-catenin signalling was blocked, the inhibitory effect of GMSC-Exo on the NF-κB pathway was abolished.GMSC-Exo could promote the osteogenic differentiation of PDLSCs. There could be mutually exclusive regulatory roles between the NF-κB and Wnt/β-catenin signalling pathways in a periodontal inflammatory environment. GMSC-Exo exhibited an effective cross-regulation ability for both pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI