Branch-Price-and-Cut-Based Solution of Order Batching Problems

启发式 树遍历 列生成 数学优化 车辆路径问题 启发式 导线 计算机科学 集合(抽象数据类型) 布线(电子设计自动化) 计算 订单(交换) 最短路径问题 分支和切割 国家(计算机科学) 路径(计算) 整数规划 数学 算法 图形 理论计算机科学 经济 计算机网络 大地测量学 程序设计语言 地理 财务
作者
Julia Wahlen,Timo Gschwind
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (3): 756-777 被引量:14
标识
DOI:10.1287/trsc.2023.1198
摘要

Given a set of customer orders each comprising one or more individual items to be picked, the order batching problem (OBP) in warehousing consists of designing a set of picking batches such that each customer order is assigned to exactly one batch, all batches satisfy the capacity restriction of the pickers, and the total distance traveled by the pickers is minimal. In order to collect the items of a batch, the pickers traverse the warehouse using a predefined routing strategy. We propose a branch-price-and-cut (BPC) algorithm for the exact solution of the OBP investigating the routing strategies traversal, return, midpoint, largest gap, combined, and optimal. The column-generation pricing problem is modeled as a shortest path problem with resource constraints (SPPRC) that can be adapted to handle the implications from nonrobust valid inequalities and branching decisions. The SPPRC pricing problem is solved by means of an effective labeling algorithm that relies on strong completion bounds. Capacity cuts and subset-row cuts are used to strengthen the lower bounds. Furthermore, we derive two BPC-based heuristics to identify high-quality solutions in short computation times. Extensive computational results demonstrate the effectiveness of the proposed methods. The BPC is faster by two orders of magnitude compared with the state-of-the-art exact approach and can solve to optimality hundreds of instances that were previously unsolved. The BPC-based heuristics are able to significantly improve the gaps reported for the state-of-the-art heuristic and provide hundreds of new best-known solutions. Funding: This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Grant 418727865]. This support is gratefully acknowledged. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.1198 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善良书蕾完成签到,获得积分10
1秒前
2秒前
2秒前
程住气完成签到 ,获得积分10
3秒前
小华完成签到 ,获得积分10
4秒前
啊哈哈哈哈哈完成签到 ,获得积分10
5秒前
七月星河完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
开朗初晴完成签到,获得积分10
9秒前
科研通AI2S应助稚生w采纳,获得10
10秒前
10秒前
刘雪完成签到 ,获得积分10
11秒前
viogriffin完成签到,获得积分0
12秒前
13秒前
13秒前
SASI完成签到 ,获得积分10
15秒前
刘哔完成签到,获得积分10
15秒前
TH完成签到 ,获得积分10
16秒前
16秒前
不想读书完成签到,获得积分10
16秒前
16秒前
16秒前
无字诉题完成签到 ,获得积分10
17秒前
17秒前
长岛冰茶完成签到,获得积分10
19秒前
呱呱完成签到 ,获得积分10
20秒前
小王完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
我不是哪吒完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
Ds发布了新的文献求助10
21秒前
9182完成签到,获得积分10
22秒前
meng完成签到,获得积分10
22秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
22秒前
大江流完成签到,获得积分10
24秒前
酷炫的飞阳完成签到,获得积分10
24秒前
羊羊羊完成签到 ,获得积分10
25秒前
11完成签到,获得积分10
26秒前
wisdom完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664825
求助须知:如何正确求助?哪些是违规求助? 4870916
关于积分的说明 15108980
捐赠科研通 4823643
什么是DOI,文献DOI怎么找? 2582450
邀请新用户注册赠送积分活动 1536469
关于科研通互助平台的介绍 1495006