亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Branch-Price-and-Cut-Based Solution of Order Batching Problems

启发式 树遍历 列生成 数学优化 车辆路径问题 启发式 导线 计算机科学 集合(抽象数据类型) 布线(电子设计自动化) 计算 订单(交换) 最短路径问题 分支和切割 国家(计算机科学) 路径(计算) 整数规划 数学 算法 图形 理论计算机科学 经济 计算机网络 大地测量学 程序设计语言 地理 财务
作者
Julia Wahlen,Timo Gschwind
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (3): 756-777 被引量:8
标识
DOI:10.1287/trsc.2023.1198
摘要

Given a set of customer orders each comprising one or more individual items to be picked, the order batching problem (OBP) in warehousing consists of designing a set of picking batches such that each customer order is assigned to exactly one batch, all batches satisfy the capacity restriction of the pickers, and the total distance traveled by the pickers is minimal. In order to collect the items of a batch, the pickers traverse the warehouse using a predefined routing strategy. We propose a branch-price-and-cut (BPC) algorithm for the exact solution of the OBP investigating the routing strategies traversal, return, midpoint, largest gap, combined, and optimal. The column-generation pricing problem is modeled as a shortest path problem with resource constraints (SPPRC) that can be adapted to handle the implications from nonrobust valid inequalities and branching decisions. The SPPRC pricing problem is solved by means of an effective labeling algorithm that relies on strong completion bounds. Capacity cuts and subset-row cuts are used to strengthen the lower bounds. Furthermore, we derive two BPC-based heuristics to identify high-quality solutions in short computation times. Extensive computational results demonstrate the effectiveness of the proposed methods. The BPC is faster by two orders of magnitude compared with the state-of-the-art exact approach and can solve to optimality hundreds of instances that were previously unsolved. The BPC-based heuristics are able to significantly improve the gaps reported for the state-of-the-art heuristic and provide hundreds of new best-known solutions. Funding: This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Grant 418727865]. This support is gratefully acknowledged. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.1198 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
12秒前
26秒前
酷波er应助白兰雪花膏采纳,获得10
31秒前
lwenjing发布了新的文献求助10
33秒前
大模型应助lwenjing采纳,获得10
44秒前
46秒前
53秒前
1分钟前
所所应助默默善愁采纳,获得10
1分钟前
www发布了新的文献求助10
1分钟前
CodeCraft应助as采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得30
1分钟前
1分钟前
SciGPT应助sheen采纳,获得10
2分钟前
无花果应助宋杓采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
sheen发布了新的文献求助10
2分钟前
宋杓发布了新的文献求助10
2分钟前
雨之夏日发布了新的文献求助50
2分钟前
宋杓完成签到,获得积分10
2分钟前
sheen完成签到,获得积分10
2分钟前
AllRightReserved完成签到 ,获得积分10
2分钟前
Cecilia完成签到,获得积分10
2分钟前
开心的万天完成签到,获得积分10
3分钟前
3分钟前
大熊完成签到 ,获得积分10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
3分钟前
脑洞疼应助欣慰的铭采纳,获得10
3分钟前
jy完成签到,获得积分20
3分钟前
4分钟前
欣慰的铭发布了新的文献求助10
4分钟前
4分钟前
雨之夏日发布了新的文献求助10
4分钟前
善学以致用应助w123采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302321
求助须知:如何正确求助?哪些是违规求助? 4449504
关于积分的说明 13848409
捐赠科研通 4335689
什么是DOI,文献DOI怎么找? 2380484
邀请新用户注册赠送积分活动 1375488
关于科研通互助平台的介绍 1341703