Branch-Price-and-Cut-Based Solution of Order Batching Problems

启发式 树遍历 列生成 数学优化 车辆路径问题 启发式 导线 计算机科学 集合(抽象数据类型) 布线(电子设计自动化) 计算 订单(交换) 最短路径问题 分支和切割 国家(计算机科学) 路径(计算) 整数规划 数学 算法 图形 理论计算机科学 经济 计算机网络 大地测量学 程序设计语言 地理 财务
作者
Julia Wahlen,Timo Gschwind
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (3): 756-777 被引量:5
标识
DOI:10.1287/trsc.2023.1198
摘要

Given a set of customer orders each comprising one or more individual items to be picked, the order batching problem (OBP) in warehousing consists of designing a set of picking batches such that each customer order is assigned to exactly one batch, all batches satisfy the capacity restriction of the pickers, and the total distance traveled by the pickers is minimal. In order to collect the items of a batch, the pickers traverse the warehouse using a predefined routing strategy. We propose a branch-price-and-cut (BPC) algorithm for the exact solution of the OBP investigating the routing strategies traversal, return, midpoint, largest gap, combined, and optimal. The column-generation pricing problem is modeled as a shortest path problem with resource constraints (SPPRC) that can be adapted to handle the implications from nonrobust valid inequalities and branching decisions. The SPPRC pricing problem is solved by means of an effective labeling algorithm that relies on strong completion bounds. Capacity cuts and subset-row cuts are used to strengthen the lower bounds. Furthermore, we derive two BPC-based heuristics to identify high-quality solutions in short computation times. Extensive computational results demonstrate the effectiveness of the proposed methods. The BPC is faster by two orders of magnitude compared with the state-of-the-art exact approach and can solve to optimality hundreds of instances that were previously unsolved. The BPC-based heuristics are able to significantly improve the gaps reported for the state-of-the-art heuristic and provide hundreds of new best-known solutions. Funding: This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [Grant 418727865]. This support is gratefully acknowledged. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2023.1198 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiqichihuoguoa完成签到 ,获得积分10
1秒前
小满完成签到,获得积分10
2秒前
惜墨应助xuening采纳,获得30
2秒前
核探测完成签到,获得积分10
4秒前
蛋壳柯发布了新的文献求助10
5秒前
研友_842M4n完成签到,获得积分10
6秒前
6秒前
粉红三倍速完成签到 ,获得积分10
7秒前
平淡忻应助王小胖采纳,获得10
8秒前
淡然乌完成签到,获得积分10
8秒前
xuyi完成签到,获得积分10
9秒前
viyou完成签到,获得积分10
10秒前
10秒前
求索完成签到 ,获得积分10
11秒前
jjjdy完成签到,获得积分10
12秒前
HEIKU应助宋菲菲菲菲采纳,获得10
12秒前
123发布了新的文献求助10
13秒前
leeQ完成签到,获得积分10
13秒前
LL完成签到,获得积分10
13秒前
yugongjie完成签到 ,获得积分10
13秒前
14秒前
14秒前
淡然的宛秋完成签到,获得积分10
14秒前
15秒前
卯一完成签到 ,获得积分10
15秒前
16秒前
程程程完成签到,获得积分10
17秒前
18秒前
Oasis发布了新的文献求助10
18秒前
阳光大有应助小郭采纳,获得10
19秒前
19秒前
20秒前
糯米种子完成签到,获得积分10
20秒前
iNk应助甜蜜的代容采纳,获得10
20秒前
yuanshengyouji完成签到,获得积分20
22秒前
Peng完成签到,获得积分10
22秒前
22秒前
mml发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137214
求助须知:如何正确求助?哪些是违规求助? 2788251
关于积分的说明 7785413
捐赠科研通 2444284
什么是DOI,文献DOI怎么找? 1299869
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023