A New Cross-Domain Bearing Fault Diagnosis Framework Based on Transferable Features and Manifold Embedded Discriminative Distribution Adaption Under Class Imbalance

判别式 模式识别(心理学) 计算机科学 人工智能 子空间拓扑 稳健性(进化) 分类器(UML) 学习迁移 特征提取 机器学习 生物化学 基因 化学
作者
Xiao Yu,Hongshen Yin,Li Sun,Fei Dong,Kun Yu,Ke Feng,Yongchao Zhang,Wanli Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7525-7545 被引量:20
标识
DOI:10.1109/jsen.2023.3248950
摘要

Cross-domain fault diagnosis based on transfer learning has been popularly developed to overcome inconsistent data distribution-caused degradation of diagnostic performance. However, the existing methods are typically suffering from a class imbalance of domains and lacking sufficient fault data because it is difficult to obtain the real industrial data of machinery under fault conditions. To address these problems, this work proposes a new cross-domain bearing diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption. First, it applies the maximal overlap discrete wavelet packet transform to process the vibration data and extract different statistics-based features. Then, to enhance the domain adaptation performance, it designs a transferability evaluation based on the adjusted rand index and maximum mean discrepancy to quantify the fault discriminability and domain invariance of the features. After that, it proposes a novel manifold embedded discriminative joint distribution adaptation method to perform cross-domain feature discriminative joint distribution alignment in a Grassmann manifold subspace. Finally, it utilizes a random forest classifier to train the cross-domain fault diagnosis model. To verify the performances of the proposed methods, extensive experiments have been conducted on two real rolling bearing datasets. The results demonstrate that the proposed methods can achieve the desirable diagnosis results and significantly outperform comparative classical transfer learning-based models when there is the class imbalance between source and target domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助kxm采纳,获得10
1秒前
1秒前
KT完成签到,获得积分10
1秒前
1秒前
苗苗会喵喵完成签到,获得积分10
1秒前
完美世界应助TT采纳,获得10
1秒前
2秒前
2秒前
今后应助yu采纳,获得30
3秒前
3秒前
跳跃的问玉完成签到,获得积分20
3秒前
tt发布了新的文献求助30
3秒前
minbio发布了新的文献求助20
3秒前
4秒前
4秒前
5秒前
5秒前
科研通AI2S应助wind采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Nothing完成签到,获得积分10
6秒前
SilentLight发布了新的文献求助10
7秒前
一只菜鸡发布了新的文献求助10
8秒前
AA完成签到 ,获得积分10
8秒前
8秒前
647发布了新的文献求助10
8秒前
霸气靖雁发布了新的文献求助10
8秒前
gexzygg发布了新的文献求助10
8秒前
呆萌千万完成签到,获得积分10
8秒前
9秒前
微笑霸完成签到,获得积分10
9秒前
9秒前
祖之微笑完成签到,获得积分10
9秒前
研友_VZGvVn发布了新的文献求助10
9秒前
贾小云完成签到 ,获得积分10
10秒前
iwonder发布了新的文献求助10
11秒前
wise111发布了新的文献求助10
11秒前
LYF发布了新的文献求助10
12秒前
Rando应助缓慢含烟采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660493
求助须知:如何正确求助?哪些是违规求助? 4834344
关于积分的说明 15090899
捐赠科研通 4819088
什么是DOI,文献DOI怎么找? 2579076
邀请新用户注册赠送积分活动 1533600
关于科研通互助平台的介绍 1492361