A New Cross-Domain Bearing Fault Diagnosis Framework Based on Transferable Features and Manifold Embedded Discriminative Distribution Adaption Under Class Imbalance

判别式 模式识别(心理学) 计算机科学 人工智能 子空间拓扑 稳健性(进化) 分类器(UML) 域适应 学习迁移 特征提取 机器学习 生物化学 基因 化学
作者
Xiao Yu,Hongshen Yin,Li‐Peng Sun,Fangmin Dong,Kun Yu,Ke Feng,Yongchao Zhang,Wanli Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7525-7545 被引量:6
标识
DOI:10.1109/jsen.2023.3248950
摘要

Cross-domain fault diagnosis based on transfer learning has been popularly developed to overcome inconsistent data distribution-caused degradation of diagnostic performance. However, the existing methods are typically suffering from a class imbalance of domains and lacking sufficient fault data because it is difficult to obtain the real industrial data of machinery under fault conditions. To address these problems, this work proposes a new cross-domain bearing diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption. First, it applies the maximal overlap discrete wavelet packet transform to process the vibration data and extract different statistics-based features. Then, to enhance the domain adaptation performance, it designs a transferability evaluation based on the adjusted rand index and maximum mean discrepancy to quantify the fault discriminability and domain invariance of the features. After that, it proposes a novel manifold embedded discriminative joint distribution adaptation method to perform cross-domain feature discriminative joint distribution alignment in a Grassmann manifold subspace. Finally, it utilizes a random forest classifier to train the cross-domain fault diagnosis model. To verify the performances of the proposed methods, extensive experiments have been conducted on two real rolling bearing datasets. The results demonstrate that the proposed methods can achieve the desirable diagnosis results and significantly outperform comparative classical transfer learning-based models when there is the class imbalance between source and target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lins完成签到,获得积分20
刚刚
Orange应助cindy采纳,获得10
1秒前
1秒前
phz完成签到,获得积分10
1秒前
2秒前
所所应助积极的凌波采纳,获得10
2秒前
SV关注了科研通微信公众号
2秒前
白蕲完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助20
3秒前
柔弱凡松发布了新的文献求助10
4秒前
yyds完成签到,获得积分10
5秒前
认真子默完成签到,获得积分10
5秒前
5秒前
5秒前
mylian完成签到,获得积分10
5秒前
7秒前
7秒前
SY发布了新的文献求助10
7秒前
可爱小哪吒完成签到,获得积分10
7秒前
斯文败类应助doudou采纳,获得10
8秒前
苹果完成签到,获得积分10
8秒前
8秒前
一颗咸蛋黄完成签到 ,获得积分20
10秒前
打打应助5477采纳,获得10
10秒前
灵巧坤发布了新的文献求助30
10秒前
10秒前
小猴完成签到,获得积分10
11秒前
Raymond应助NANA采纳,获得10
12秒前
Sean完成签到 ,获得积分10
12秒前
12秒前
无情山水发布了新的文献求助10
13秒前
锦纹完成签到,获得积分10
13秒前
南桥发布了新的文献求助10
13秒前
13秒前
伶俐的书白完成签到,获得积分10
14秒前
科研通AI5应助威武诺言采纳,获得10
14秒前
14秒前
LXL完成签到,获得积分10
14秒前
杳鸢应助三金采纳,获得20
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762