A New Cross-Domain Bearing Fault Diagnosis Framework Based on Transferable Features and Manifold Embedded Discriminative Distribution Adaption Under Class Imbalance

判别式 模式识别(心理学) 计算机科学 人工智能 子空间拓扑 稳健性(进化) 分类器(UML) 学习迁移 特征提取 机器学习 生物化学 化学 基因
作者
Xiao Yu,Hongshen Yin,Li Sun,Fei Dong,Kun Yu,Ke Feng,Yongchao Zhang,Wanli Yu
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (7): 7525-7545 被引量:20
标识
DOI:10.1109/jsen.2023.3248950
摘要

Cross-domain fault diagnosis based on transfer learning has been popularly developed to overcome inconsistent data distribution-caused degradation of diagnostic performance. However, the existing methods are typically suffering from a class imbalance of domains and lacking sufficient fault data because it is difficult to obtain the real industrial data of machinery under fault conditions. To address these problems, this work proposes a new cross-domain bearing diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption. First, it applies the maximal overlap discrete wavelet packet transform to process the vibration data and extract different statistics-based features. Then, to enhance the domain adaptation performance, it designs a transferability evaluation based on the adjusted rand index and maximum mean discrepancy to quantify the fault discriminability and domain invariance of the features. After that, it proposes a novel manifold embedded discriminative joint distribution adaptation method to perform cross-domain feature discriminative joint distribution alignment in a Grassmann manifold subspace. Finally, it utilizes a random forest classifier to train the cross-domain fault diagnosis model. To verify the performances of the proposed methods, extensive experiments have been conducted on two real rolling bearing datasets. The results demonstrate that the proposed methods can achieve the desirable diagnosis results and significantly outperform comparative classical transfer learning-based models when there is the class imbalance between source and target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
passerby发布了新的文献求助10
1秒前
1秒前
pdx666完成签到,获得积分10
3秒前
丘比特应助缪伟采纳,获得10
3秒前
JXY完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
知名不具发布了新的文献求助10
4秒前
赫连烙发布了新的文献求助10
5秒前
笑点低的秋蝶完成签到,获得积分10
6秒前
叮叮当当发布了新的文献求助30
7秒前
7秒前
ying完成签到,获得积分10
7秒前
dopamine发布了新的文献求助10
8秒前
麦乐迪应助圆圆采纳,获得10
9秒前
10秒前
幼儿园老大完成签到,获得积分10
10秒前
infe完成签到,获得积分10
10秒前
高高完成签到,获得积分10
10秒前
可爱问寒完成签到 ,获得积分20
11秒前
乘乘完成签到 ,获得积分10
12秒前
Syanyi完成签到 ,获得积分10
12秒前
12秒前
12秒前
领导范儿应助宁阿霜采纳,获得10
14秒前
知名不具发布了新的文献求助10
16秒前
16秒前
16秒前
小二郎应助称心的寄风采纳,获得10
17秒前
荼蘼发布了新的文献求助10
17秒前
吱吱吱完成签到 ,获得积分10
17秒前
Qianwen发布了新的文献求助10
18秒前
VDC应助虚心的芹采纳,获得30
18秒前
18秒前
高兴的又菡完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
linman发布了新的文献求助10
20秒前
马兵发布了新的文献求助10
21秒前
Saya发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577935
求助须知:如何正确求助?哪些是违规求助? 3997037
关于积分的说明 12374100
捐赠科研通 3671042
什么是DOI,文献DOI怎么找? 2023214
邀请新用户注册赠送积分活动 1057205
科研通“疑难数据库(出版商)”最低求助积分说明 944176