亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Cross-Domain Bearing Fault Diagnosis Framework Based on Transferable Features and Manifold Embedded Discriminative Distribution Adaption Under Class Imbalance

判别式 模式识别(心理学) 计算机科学 人工智能 子空间拓扑 稳健性(进化) 分类器(UML) 学习迁移 特征提取 机器学习 生物化学 基因 化学
作者
Xiao Yu,Hongshen Yin,Li Sun,Fei Dong,Kun Yu,Ke Feng,Yongchao Zhang,Wanli Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7525-7545 被引量:20
标识
DOI:10.1109/jsen.2023.3248950
摘要

Cross-domain fault diagnosis based on transfer learning has been popularly developed to overcome inconsistent data distribution-caused degradation of diagnostic performance. However, the existing methods are typically suffering from a class imbalance of domains and lacking sufficient fault data because it is difficult to obtain the real industrial data of machinery under fault conditions. To address these problems, this work proposes a new cross-domain bearing diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption. First, it applies the maximal overlap discrete wavelet packet transform to process the vibration data and extract different statistics-based features. Then, to enhance the domain adaptation performance, it designs a transferability evaluation based on the adjusted rand index and maximum mean discrepancy to quantify the fault discriminability and domain invariance of the features. After that, it proposes a novel manifold embedded discriminative joint distribution adaptation method to perform cross-domain feature discriminative joint distribution alignment in a Grassmann manifold subspace. Finally, it utilizes a random forest classifier to train the cross-domain fault diagnosis model. To verify the performances of the proposed methods, extensive experiments have been conducted on two real rolling bearing datasets. The results demonstrate that the proposed methods can achieve the desirable diagnosis results and significantly outperform comparative classical transfer learning-based models when there is the class imbalance between source and target domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪蜜粉完成签到 ,获得积分10
1秒前
Qst完成签到,获得积分10
2秒前
平心定气完成签到 ,获得积分10
7秒前
紧张的书文完成签到 ,获得积分10
12秒前
12秒前
无情墨镜发布了新的文献求助10
17秒前
aIARLAE完成签到,获得积分10
21秒前
xzx完成签到,获得积分10
25秒前
33秒前
xpeng完成签到,获得积分10
33秒前
小马甲应助无情墨镜采纳,获得10
35秒前
lmj完成签到,获得积分10
39秒前
情怀应助yusheng采纳,获得10
40秒前
光合作用完成签到,获得积分10
42秒前
务实书包完成签到,获得积分10
46秒前
李爱国应助称心的忆枫采纳,获得10
49秒前
天才幸运鱼完成签到,获得积分10
49秒前
50秒前
单薄绿竹完成签到,获得积分10
56秒前
yusheng发布了新的文献求助10
57秒前
等风来LYY发布了新的文献求助10
1分钟前
陌陌发布了新的文献求助10
1分钟前
ZY完成签到 ,获得积分20
1分钟前
负责不愁完成签到,获得积分20
1分钟前
1分钟前
善学以致用应助陌陌采纳,获得10
1分钟前
负责不愁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
钟山发布了新的文献求助10
1分钟前
1分钟前
小静完成签到,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
太阳当空照完成签到,获得积分10
2分钟前
2分钟前
www发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723454
求助须知:如何正确求助?哪些是违规求助? 5277734
关于积分的说明 15298730
捐赠科研通 4871918
什么是DOI,文献DOI怎么找? 2616372
邀请新用户注册赠送积分活动 1566191
关于科研通互助平台的介绍 1523088