A New Cross-Domain Bearing Fault Diagnosis Framework Based on Transferable Features and Manifold Embedded Discriminative Distribution Adaption Under Class Imbalance

判别式 模式识别(心理学) 计算机科学 人工智能 子空间拓扑 稳健性(进化) 分类器(UML) 学习迁移 特征提取 机器学习 生物化学 基因 化学
作者
Xiao Yu,Hongshen Yin,Li Sun,Fei Dong,Kun Yu,Ke Feng,Yongchao Zhang,Wanli Yu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (7): 7525-7545 被引量:20
标识
DOI:10.1109/jsen.2023.3248950
摘要

Cross-domain fault diagnosis based on transfer learning has been popularly developed to overcome inconsistent data distribution-caused degradation of diagnostic performance. However, the existing methods are typically suffering from a class imbalance of domains and lacking sufficient fault data because it is difficult to obtain the real industrial data of machinery under fault conditions. To address these problems, this work proposes a new cross-domain bearing diagnosis framework based on transferable features and manifold embedded discriminative distribution adaption. First, it applies the maximal overlap discrete wavelet packet transform to process the vibration data and extract different statistics-based features. Then, to enhance the domain adaptation performance, it designs a transferability evaluation based on the adjusted rand index and maximum mean discrepancy to quantify the fault discriminability and domain invariance of the features. After that, it proposes a novel manifold embedded discriminative joint distribution adaptation method to perform cross-domain feature discriminative joint distribution alignment in a Grassmann manifold subspace. Finally, it utilizes a random forest classifier to train the cross-domain fault diagnosis model. To verify the performances of the proposed methods, extensive experiments have been conducted on two real rolling bearing datasets. The results demonstrate that the proposed methods can achieve the desirable diagnosis results and significantly outperform comparative classical transfer learning-based models when there is the class imbalance between source and target domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的睫毛完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
小巧的烤鸡完成签到,获得积分20
3秒前
bwh发布了新的文献求助10
3秒前
超级桂花糕完成签到 ,获得积分10
3秒前
风中的哈密瓜完成签到 ,获得积分10
4秒前
4秒前
5秒前
自由的迎南完成签到 ,获得积分10
6秒前
风趣的语蕊完成签到,获得积分10
7秒前
隐形的迎南完成签到,获得积分10
8秒前
漂亮的若山完成签到,获得积分10
8秒前
搜集达人应助文献多多看采纳,获得10
8秒前
共享精神应助淡淡的南风采纳,获得10
9秒前
斯文败类应助淡淡的南风采纳,获得10
9秒前
9秒前
我是老大应助淡淡的南风采纳,获得10
9秒前
雪山飞虹发布了新的文献求助10
9秒前
9秒前
浮游应助淡淡的南风采纳,获得10
9秒前
共享精神应助淡淡的南风采纳,获得30
9秒前
酷波er应助淡淡的南风采纳,获得10
9秒前
NexusExplorer应助淡淡的南风采纳,获得10
9秒前
财源滚滚发布了新的文献求助10
9秒前
eee关闭了eee文献求助
10秒前
12秒前
房山芙完成签到,获得积分10
12秒前
烟花应助廿一采纳,获得10
12秒前
HHH发布了新的文献求助10
14秒前
14秒前
16秒前
财源滚滚完成签到,获得积分10
17秒前
初空月儿发布了新的文献求助10
17秒前
薏仁完成签到 ,获得积分10
19秒前
19秒前
ShiSakura完成签到,获得积分10
20秒前
20秒前
追寻清完成签到,获得积分10
21秒前
程公子完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424333
求助须知:如何正确求助?哪些是违规求助? 4538732
关于积分的说明 14163572
捐赠科研通 4455641
什么是DOI,文献DOI怎么找? 2443832
邀请新用户注册赠送积分活动 1434995
关于科研通互助平台的介绍 1412304