Bridge the gap between full-reference and no-reference: A totally full-reference induced blind image quality assessment via deep neural networks

计算机科学 人工智能 卷积神经网络 一般化 图像质量 人工神经网络 模式识别(心理学) 机器学习 图像(数学) 数学 数学分析
作者
Xiaoyu Ma,Suiyu Zhang,Chang Liu,Dingguo Yu
出处
期刊:China Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (6): 215-228
标识
DOI:10.23919/jcc.2023.00.023
摘要

Blind image quality assessment (BIQA) is of fundamental importance in low-level computer vision community. Increasing interest has been drawn in exploiting deep neural networks for BIQA. Despite of the notable success achieved, there is a broad consensus that training deep convolutional neural networks (DCNN) heavily relies on massive annotated data. Unfortunately, BIQA is typically a small sample problem, resulting the generalization ability of BIQA severely restricted. In order to improve the accuracy and generalization ability of BIQA metrics, this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage. Multiple full-reference image quality assessment (FR-IQA) metrics are employed to label the distorted image as a substitution of subjective quality annotation. A deep neural network (DNN) is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image. In the end, a self-supervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score. Even though none of subjective scores are involved in the training stage, experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Once发布了新的文献求助10
2秒前
活泼蜡烛发布了新的文献求助10
4秒前
zhuzhen007完成签到,获得积分10
5秒前
谢建平完成签到,获得积分20
5秒前
6秒前
某某某发布了新的文献求助10
7秒前
盛强完成签到,获得积分10
7秒前
nono完成签到,获得积分10
8秒前
zhuzhen007发布了新的文献求助10
9秒前
10秒前
Once完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
14秒前
evefei完成签到,获得积分10
14秒前
infinite完成签到,获得积分10
15秒前
15秒前
Akim应助Xwu采纳,获得10
15秒前
健忘的无色完成签到 ,获得积分10
16秒前
谦让含玉发布了新的文献求助10
18秒前
Samuel发布了新的文献求助10
18秒前
18秒前
龙仔发布了新的文献求助10
18秒前
晴烟ZYM发布了新的文献求助10
19秒前
开心太阳应助忆枫采纳,获得10
19秒前
smart发布了新的文献求助10
19秒前
student完成签到,获得积分10
20秒前
个性楷瑞完成签到,获得积分10
21秒前
香蕉觅云应助小唐尼采纳,获得10
22秒前
cc完成签到,获得积分10
22秒前
哦1发布了新的文献求助10
22秒前
淡定成风完成签到,获得积分10
23秒前
一方通行完成签到,获得积分10
23秒前
24秒前
24秒前
Liu完成签到,获得积分10
25秒前
华仔应助哦1采纳,获得10
27秒前
iceberg完成签到,获得积分10
27秒前
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425