The fusion of deep learning and acoustic emission response methods for identifying solid particles in annular multiphase flows

希尔伯特-黄变换 粒子(生态学) 多相流 声发射 流量(数学) 表面速度 人工智能 材料科学 机械 计算机科学 岩土工程 地质学 模拟 物理 计算机视觉 复合材料 海洋学 滤波器(信号处理)
作者
Wang Ka,Ziang Chang,Yichen Li,Peng Tian,Min Qin,Guangming Fu,Bangtang Yin,Gang Wang
标识
DOI:10.1016/j.geoen.2023.211685
摘要

Annular flows carrying sand are common flow patterns in high-production gas-bearing wells. The real-time monitoring of sand particle information in the annular flows of wellheads is critical for efficient commercial production. In this study, an experiment was designed to monitor sand production in annular multiphase flows, and methods were proposed to identify sand using empirical mode decomposition (EMD), the Hilbert–Huang transform (HHT), statistical analysis, and deep learning methods. Corresponding sand migration behaviours near pipe walls were observed by acoustic emission (AE); the behaviours included sand carried by the gas core (IMF1), forward liquid film (IMF2) and reverse liquid film (IMF3). Furthermore, relationships between the AE response and gas superficial velocity (14–18 m/s), liquid superficial velocity (0.00366–0.01351 m/s), and mean particle size (150–380 μm) were proposed, and the AE responses of different sand migration patterns were verified. Finally, CNN, LSTM, and CNN-LSTM deep learning models were constructed to identify particle sizes based on the optimized sand-carrying information. The accuracy of the CNN-LSTM model was 6.44% and 18.9% higher than that of the CNN model and the LSTM model, respectively, which significantly improved the accuracy of particle size identification in annular particle flows. Therefore, this research provides an efficient method for the intelligent identification of sand in multiphase annular flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuebaoji发布了新的文献求助10
刚刚
刚刚
功夫熊猫发布了新的文献求助10
1秒前
顾矜应助佳佳采纳,获得10
1秒前
傲慢葫芦完成签到,获得积分20
2秒前
大壮发布了新的文献求助10
2秒前
泛泛之交发布了新的文献求助10
2秒前
3秒前
维尼完成签到,获得积分10
4秒前
友好的冥王星完成签到,获得积分10
4秒前
想躺平的咸鱼人完成签到,获得积分10
5秒前
十三发布了新的文献求助10
5秒前
cxxxx完成签到,获得积分10
6秒前
6秒前
热情凌青完成签到,获得积分10
6秒前
7秒前
su完成签到 ,获得积分10
7秒前
晨曦发布了新的文献求助10
9秒前
情怀应助简单小蕊采纳,获得10
10秒前
小小毅1989完成签到 ,获得积分10
10秒前
Kombate发布了新的文献求助10
10秒前
搜集达人应助大壮采纳,获得10
11秒前
FashionBoy应助傲慢葫芦采纳,获得10
11秒前
羊觅夏发布了新的文献求助20
13秒前
行稳致远完成签到,获得积分10
13秒前
14秒前
TXZ06给TXZ06的求助进行了留言
14秒前
科研通AI2S应助温暖天与采纳,获得10
15秒前
汉堡包应助牛牛采纳,获得10
15秒前
Akim应助Jackson采纳,获得10
15秒前
张张完成签到 ,获得积分10
16秒前
fengzi151完成签到,获得积分10
16秒前
16秒前
薯条狂热爱好者完成签到 ,获得积分10
16秒前
Owen应助我又可以了采纳,获得10
16秒前
Kombate完成签到,获得积分10
16秒前
毛豆应助wan_lo采纳,获得10
17秒前
17秒前
毛豆应助晴天采纳,获得10
18秒前
Bob_Y发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547