The fusion of deep learning and acoustic emission response methods for identifying solid particles in annular multiphase flows

希尔伯特-黄变换 粒子(生态学) 多相流 声发射 流量(数学) 表面速度 人工智能 材料科学 机械 计算机科学 岩土工程 地质学 模拟 物理 计算机视觉 复合材料 海洋学 滤波器(信号处理)
作者
Wang Ka,Ziang Chang,Yichen Li,Peng Tian,Min Qin,Guangming Fu,Bangtang Yin,Gang Wang
标识
DOI:10.1016/j.geoen.2023.211685
摘要

Annular flows carrying sand are common flow patterns in high-production gas-bearing wells. The real-time monitoring of sand particle information in the annular flows of wellheads is critical for efficient commercial production. In this study, an experiment was designed to monitor sand production in annular multiphase flows, and methods were proposed to identify sand using empirical mode decomposition (EMD), the Hilbert–Huang transform (HHT), statistical analysis, and deep learning methods. Corresponding sand migration behaviours near pipe walls were observed by acoustic emission (AE); the behaviours included sand carried by the gas core (IMF1), forward liquid film (IMF2) and reverse liquid film (IMF3). Furthermore, relationships between the AE response and gas superficial velocity (14–18 m/s), liquid superficial velocity (0.00366–0.01351 m/s), and mean particle size (150–380 μm) were proposed, and the AE responses of different sand migration patterns were verified. Finally, CNN, LSTM, and CNN-LSTM deep learning models were constructed to identify particle sizes based on the optimized sand-carrying information. The accuracy of the CNN-LSTM model was 6.44% and 18.9% higher than that of the CNN model and the LSTM model, respectively, which significantly improved the accuracy of particle size identification in annular particle flows. Therefore, this research provides an efficient method for the intelligent identification of sand in multiphase annular flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nowind完成签到,获得积分10
刚刚
顺心的书包完成签到,获得积分10
刚刚
宝贝丫头完成签到 ,获得积分10
刚刚
刚刚
飞阳完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
英姑应助聪慧的傲珊采纳,获得10
2秒前
全磬发布了新的文献求助10
3秒前
98发布了新的文献求助10
3秒前
4秒前
风趣鸽子发布了新的文献求助10
4秒前
小如要努力完成签到,获得积分10
4秒前
5秒前
淡淡紫山完成签到,获得积分10
5秒前
小郭发布了新的文献求助10
5秒前
乐乐应助机灵的火龙果采纳,获得10
6秒前
6秒前
思睿发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
赵赵赵发布了新的文献求助10
9秒前
9秒前
务实青亦完成签到,获得积分10
9秒前
云康肖发布了新的文献求助10
10秒前
98完成签到,获得积分10
10秒前
bhkwxdxy完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
ooh完成签到,获得积分10
12秒前
KM发布了新的文献求助10
13秒前
shenzhou9完成签到,获得积分10
13秒前
13秒前
wanci应助牟勒采纳,获得10
14秒前
14秒前
小甲同学发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755562
求助须知:如何正确求助?哪些是违规求助? 3298696
关于积分的说明 10106720
捐赠科研通 3013351
什么是DOI,文献DOI怎么找? 1655100
邀请新用户注册赠送积分活动 789453
科研通“疑难数据库(出版商)”最低求助积分说明 753286