HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 人类学 计算机安全 社会学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 271-287 被引量:54
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫发布了新的文献求助10
1秒前
1秒前
4秒前
FashionBoy应助清新采纳,获得10
4秒前
4秒前
5秒前
zzcres完成签到,获得积分10
6秒前
7秒前
不配.应助柚子茶采纳,获得150
7秒前
8秒前
pp完成签到,获得积分10
8秒前
耳喃发布了新的文献求助10
9秒前
所所应助风信子采纳,获得10
9秒前
天真的初蓝完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
徐萌完成签到 ,获得积分10
12秒前
shiyi完成签到,获得积分10
13秒前
善学以致用应助天真大神采纳,获得10
13秒前
Ava应助灵巧鹤采纳,获得10
14秒前
16秒前
清新发布了新的文献求助10
16秒前
直率飞柏发布了新的文献求助10
17秒前
肚子好e啊完成签到 ,获得积分10
17秒前
Kent完成签到 ,获得积分10
18秒前
20秒前
xxfsx应助凯凯采纳,获得10
21秒前
苏苏发布了新的文献求助10
21秒前
22秒前
浮游应助大大小采纳,获得10
24秒前
26秒前
传奇3应助直率飞柏采纳,获得10
27秒前
27秒前
27秒前
胖虎完成签到 ,获得积分10
27秒前
CodeCraft应助jason采纳,获得10
28秒前
28秒前
嗯哈发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474