HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 人类学 计算机安全 社会学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier BV]
卷期号:162: 271-287 被引量:54
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎妙菡完成签到,获得积分10
2秒前
灵活的胖子wxp完成签到,获得积分10
2秒前
Omega完成签到,获得积分10
2秒前
小鹿斑比完成签到,获得积分10
3秒前
欢呼妙菱发布了新的文献求助10
3秒前
ash完成签到,获得积分10
4秒前
马伟杰发布了新的文献求助10
4秒前
Jasper应助一直向前采纳,获得10
5秒前
思源应助狂野忆文采纳,获得10
5秒前
大模型应助狂野忆文采纳,获得10
5秒前
科目三应助狂野忆文采纳,获得10
5秒前
酷波er应助狂野忆文采纳,获得10
5秒前
CipherSage应助狂野忆文采纳,获得10
5秒前
传奇3应助狂野忆文采纳,获得10
5秒前
斯文败类应助狂野忆文采纳,获得10
5秒前
爆米花应助狂野忆文采纳,获得10
5秒前
英姑应助狂野忆文采纳,获得10
6秒前
Hello应助狂野忆文采纳,获得10
6秒前
八月完成签到,获得积分10
6秒前
Man_proposes完成签到,获得积分10
6秒前
小佳完成签到,获得积分10
6秒前
学渣一枚完成签到,获得积分10
6秒前
6秒前
月半完成签到,获得积分10
7秒前
fys131415完成签到 ,获得积分10
7秒前
闪闪火车完成签到 ,获得积分10
7秒前
8秒前
jidou1011完成签到,获得积分10
8秒前
扁舟灬完成签到,获得积分10
8秒前
QZZ完成签到,获得积分10
8秒前
agnway完成签到,获得积分10
8秒前
9秒前
战战兢兢完成签到 ,获得积分10
9秒前
xuejie发布了新的文献求助30
9秒前
专一的傲白完成签到 ,获得积分10
9秒前
星辰大海应助miezhugong采纳,获得30
10秒前
zh完成签到,获得积分10
10秒前
123发布了新的文献求助10
10秒前
CodeCraft应助he采纳,获得10
10秒前
wisdom完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259