HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 计算机安全 社会学 人类学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 271-287 被引量:31
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rabbit完成签到 ,获得积分10
刚刚
刚刚
球球发布了新的文献求助10
1秒前
英俊的铭应助huvy采纳,获得10
1秒前
1秒前
阔达荣轩发布了新的文献求助10
2秒前
领导范儿应助搞怪莫茗采纳,获得10
3秒前
3秒前
心之所向发布了新的文献求助10
4秒前
斯文败类应助eerrttyyuu采纳,获得10
4秒前
yy发布了新的文献求助10
5秒前
wo完成签到 ,获得积分10
5秒前
科目三应助美丽佩奇采纳,获得10
5秒前
小立发布了新的文献求助10
6秒前
6秒前
jjjxxxmmm发布了新的文献求助10
7秒前
哈哈哈哈哈完成签到,获得积分10
8秒前
Lemon发布了新的文献求助10
8秒前
nenoaowu应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
9秒前
pluto应助科研通管家采纳,获得10
9秒前
12秒前
MingY完成签到,获得积分10
12秒前
12秒前
LMFY发布了新的文献求助10
13秒前
14秒前
15秒前
16秒前
16秒前
冷傲书萱发布了新的文献求助10
17秒前
坚强的安柏完成签到,获得积分10
17秒前
心之所向完成签到,获得积分10
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141865
求助须知:如何正确求助?哪些是违规求助? 2792802
关于积分的说明 7804260
捐赠科研通 2449115
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626748
版权声明 601265