HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 人类学 计算机安全 社会学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 271-287 被引量:54
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZS发布了新的文献求助10
刚刚
科研小萌新完成签到,获得积分10
刚刚
路戳戳应助伶俜者采纳,获得10
刚刚
1秒前
1秒前
1秒前
那年完成签到,获得积分10
1秒前
1秒前
2秒前
赘婿应助小白采纳,获得10
2秒前
爆米花应助oi采纳,获得30
2秒前
李爱国应助121采纳,获得10
2秒前
上官若男应助chun采纳,获得10
2秒前
隐形曼青应助xgs采纳,获得30
2秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
拼搏的飞莲完成签到 ,获得积分10
5秒前
大模型应助荔枝多酚采纳,获得10
6秒前
乐乐应助lll采纳,获得10
6秒前
tracy发布了新的文献求助10
7秒前
椿人发布了新的文献求助10
7秒前
8秒前
8秒前
Joker发布了新的文献求助10
8秒前
8秒前
8秒前
负责的靖琪完成签到 ,获得积分10
8秒前
10秒前
所所应助谢梦之采纳,获得10
10秒前
ccy发布了新的文献求助10
10秒前
11秒前
绿鹅完成签到,获得积分10
11秒前
现代采白关注了科研通微信公众号
12秒前
XialianWeng完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
不想取名字的天完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450