亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN

计算机科学 人工智能 模式识别(心理学) 心跳 卷积神经网络 循环神经网络 规范化(社会学) 深度学习 可解释性 特征提取 人工神经网络 人类学 计算机安全 社会学
作者
Md Shofiqul Islam,Khondokar Fida Hasan,Sunjida Sultana,Shahadat Uddin,Píetro Lió,Julian M.W. Quinn,Mohammad Ali Moni
出处
期刊:Neural Networks [Elsevier]
卷期号:162: 271-287 被引量:54
标识
DOI:10.1016/j.neunet.2023.03.004
摘要

In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
misaka发布了新的文献求助10
1秒前
丘比特应助kklkimo采纳,获得10
3秒前
大模型应助shinn采纳,获得10
4秒前
5秒前
nojego完成签到,获得积分10
6秒前
10秒前
12秒前
nn666发布了新的文献求助10
15秒前
Yikepp发布了新的文献求助30
15秒前
16秒前
coco完成签到 ,获得积分10
21秒前
科研通AI6.1应助忆修采纳,获得10
22秒前
王小Q完成签到,获得积分10
24秒前
大个应助shinn采纳,获得10
24秒前
GlockieZhao完成签到,获得积分10
26秒前
务实的觅夏关注了科研通微信公众号
27秒前
misaka完成签到,获得积分20
28秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
科研通AI6应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
Criminology34应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
小华完成签到 ,获得积分10
33秒前
37秒前
www完成签到 ,获得积分10
40秒前
shinn发布了新的文献求助10
41秒前
44秒前
shinn发布了新的文献求助10
47秒前
47秒前
wanci应助一见喜采纳,获得10
48秒前
酷波er应助炙热的念柏采纳,获得10
48秒前
53秒前
58秒前
一见喜完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772485
求助须知:如何正确求助?哪些是违规求助? 5599333
关于积分的说明 15429737
捐赠科研通 4905440
什么是DOI,文献DOI怎么找? 2639413
邀请新用户注册赠送积分活动 1587330
关于科研通互助平台的介绍 1542210