An Adaptive Conversion Speed Q-Learning Algorithm for Search and Rescue UAV Path Planning in Unknown Environments

运动规划 强化学习 计算机科学 路径(计算) 趋同(经济学) 搜救 算法 搜索算法 太空探索 增强学习 任务(项目管理) 遥控水下航行器 实时计算 人工智能 移动机器人 工程类 机器人 航空航天工程 经济 程序设计语言 系统工程 经济增长
作者
Jiehong Wu,Yanan Sun,Danyang Li,Junling Shi,Xianwei Li,Lijun Gao,Lei Yu,Guangjie Han,Jinsong Wu
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (12): 15391-15404 被引量:34
标识
DOI:10.1109/tvt.2023.3297837
摘要

With the wide application of unmanned aerial vehicles (UAVs), performing search and rescue missions autonomously in unknown environment has become an increasingly concerning issue. In this article, we propose an adaptive conversion speed Q-Learning algorithm (ACSQL). Performing UAV missions autonomously is divided into two stages: rescue mission search stage and optimal path search stage. In the first stage, a UAV can find task points as soon as possible, and the efficiency of exploration is increased by adaptively adjusting the speed of the UAV. In the second stage, to get a secure and short path, we propose a subdomain search algorithm. Based on the above two stages, we improve state space and action space in reinforcement learning, and design a composite reward function, finally obtain the path of UAV to perform multiple search and rescue missions through this algorithm. In order to solve the problems of slow training convergence and high uncertainty, we initialize the Q-table by combining detection information of UAV sensors in first stage. Simulation results show that ACSQL algorithm can realize autonomous navigation and path planning of UAV in an unknown environment. Compared with traditional action space, the learning process of UAV converges faster and more stable, and it can converge in about 30 episodes. Compared with DDPG algorithm and IDWA algorithm in different scenarios, ACSQL algorithm has the shortest path length. Finally, ACSQL algorithm is verified by UAV simulator Airsim.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mjq完成签到,获得积分10
刚刚
Nana1000发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助150
1秒前
2秒前
科研通AI5应助零零二采纳,获得10
3秒前
3秒前
铃科百合子完成签到,获得积分10
3秒前
浮生若梦完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
大个应助Jianyu采纳,获得10
5秒前
星空完成签到,获得积分10
5秒前
6秒前
小的金鱼发布了新的文献求助10
6秒前
lyt发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
大模型应助ceeray23采纳,获得20
8秒前
代杰居然发布了新的文献求助10
8秒前
8秒前
9秒前
Ki_Ayasato发布了新的文献求助10
11秒前
rrw发布了新的文献求助10
11秒前
小L同学发布了新的文献求助10
12秒前
JamesPei应助王jj采纳,获得10
12秒前
gro_ele完成签到,获得积分10
13秒前
Tara发布了新的文献求助10
14秒前
iop完成签到,获得积分10
14秒前
mizhou发布了新的文献求助10
16秒前
16秒前
月月发布了新的文献求助100
16秒前
Ki_Ayasato完成签到,获得积分10
17秒前
飘飘玲应助潇潇雨歇采纳,获得10
18秒前
19秒前
19秒前
科研通AI6应助尤野采纳,获得10
20秒前
21秒前
华仔应助tianshicanyi采纳,获得10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125340
求助须知:如何正确求助?哪些是违规求助? 4329194
关于积分的说明 13490551
捐赠科研通 4164032
什么是DOI,文献DOI怎么找? 2282685
邀请新用户注册赠送积分活动 1283829
关于科研通互助平台的介绍 1223099