Effect of asphaltene structure characteristics on asphaltene accumulation at oil-water interface: An MD simulation study

沥青质 乳状液 分子动力学 化学 结合能 氧气 化学工程 化学物理 材料科学 有机化学 计算化学 物理 工程类 核物理学
作者
Jiaxin Ying,Haiqian Zhao,Zhonghua Wang,Kaibo An,Qingxi Cao,Cuimin Li,Jiuyang Jia,Zhuangzhuang Zhang,Xiaoyan Liu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:675: 132014-132014 被引量:6
标识
DOI:10.1016/j.colsurfa.2023.132014
摘要

Asphaltenes possess the ability to accumulate at the interface of oil and water, leading to the formation of stable emulsions. These emulsions pose significant challenges in oil transportation and processing. In order to investigate the impact of asphaltene structure on the stability of the oil-water interface, various models were created using molecular dynamics simulations. These models involved modifications in the number of aromatic rings and types of oxygen-containing functional groups present in the asphaltenes. To support the findings, several analyses, such as radial distribution function, binding energies, and interface formation energy, were conducted. The simulation results indicate that an increase in the number of aromatic rings in the asphaltenes significantly enhances the binding energy at the emulsion interface, from − 215 kcal/mol to − 383 kcal/mol. This increased binding energy greatly improves the stability of the interface. Furthermore, altering the types of oxygen-containing functional groups and binding sites results in a change in the interface binding energy from − 381 kcal/mol to − 526 kcal/mol. The oxygen-containing functional groups of the asphaltene side chain vertically enter the water, forming a crosslinked structure. The polarity of these functional groups can influence the strength of the crosslinked structure, thereby impacting the stability of the interface. This paper establishes the relationship between changes in asphaltene structure and the aggregation state and energy of the interface, offering theoretical insights for future research on new demulsifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助zyme采纳,获得10
刚刚
pzh发布了新的文献求助10
刚刚
大个应助低级趣味采纳,获得10
1秒前
情怀应助张欣宇采纳,获得10
2秒前
2秒前
剁手党发布了新的文献求助20
3秒前
汉堡包应助湫殇采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
anqi完成签到 ,获得积分10
5秒前
根号五完成签到,获得积分20
5秒前
wyt完成签到,获得积分10
6秒前
时丶倾发布了新的文献求助10
6秒前
7秒前
鱼鱼发布了新的文献求助10
7秒前
7秒前
NUS完成签到,获得积分10
8秒前
Nobody发布了新的文献求助10
8秒前
噫吁嚱发布了新的文献求助100
8秒前
研友_VZG7GZ应助拿破仑的鱼采纳,获得30
9秒前
一一应助gqwe采纳,获得10
9秒前
丘比特应助Echo采纳,获得10
9秒前
着急的小熊猫给着急的小熊猫的求助进行了留言
9秒前
天天快乐应助Echo采纳,获得10
9秒前
李健应助冷酷的水壶采纳,获得10
9秒前
李健的粉丝团团长应助Echo采纳,获得10
9秒前
Akim应助Echo采纳,获得10
10秒前
花未稀完成签到,获得积分10
10秒前
10秒前
赘婿应助fengc采纳,获得10
10秒前
康康发布了新的文献求助10
10秒前
10秒前
Eddie Joe完成签到,获得积分10
10秒前
11秒前
研友_LMo6rZ发布了新的文献求助10
11秒前
周运来完成签到,获得积分10
11秒前
高兴冬灵完成签到,获得积分10
12秒前
12秒前
13秒前
情怀应助Nobody采纳,获得10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450