Effect of asphaltene structure characteristics on asphaltene accumulation at oil-water interface: An MD simulation study

沥青质 乳状液 分子动力学 化学 结合能 氧气 化学工程 化学物理 材料科学 有机化学 计算化学 物理 工程类 核物理学
作者
Jiaxin Ying,Haiqian Zhao,Zhonghua Wang,Kaibo An,Qingxi Cao,Cuimin Li,Jiuyang Jia,Zhuangzhuang Zhang,Xiaoyan Liu
出处
期刊:Colloids and Surfaces A: Physicochemical and Engineering Aspects [Elsevier]
卷期号:675: 132014-132014 被引量:6
标识
DOI:10.1016/j.colsurfa.2023.132014
摘要

Asphaltenes possess the ability to accumulate at the interface of oil and water, leading to the formation of stable emulsions. These emulsions pose significant challenges in oil transportation and processing. In order to investigate the impact of asphaltene structure on the stability of the oil-water interface, various models were created using molecular dynamics simulations. These models involved modifications in the number of aromatic rings and types of oxygen-containing functional groups present in the asphaltenes. To support the findings, several analyses, such as radial distribution function, binding energies, and interface formation energy, were conducted. The simulation results indicate that an increase in the number of aromatic rings in the asphaltenes significantly enhances the binding energy at the emulsion interface, from − 215 kcal/mol to − 383 kcal/mol. This increased binding energy greatly improves the stability of the interface. Furthermore, altering the types of oxygen-containing functional groups and binding sites results in a change in the interface binding energy from − 381 kcal/mol to − 526 kcal/mol. The oxygen-containing functional groups of the asphaltene side chain vertically enter the water, forming a crosslinked structure. The polarity of these functional groups can influence the strength of the crosslinked structure, thereby impacting the stability of the interface. This paper establishes the relationship between changes in asphaltene structure and the aggregation state and energy of the interface, offering theoretical insights for future research on new demulsifiers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈隐隐约约完成签到,获得积分10
刚刚
刚刚
guoduan完成签到,获得积分10
1秒前
1秒前
222发布了新的文献求助10
1秒前
李特冷发布了新的文献求助10
1秒前
黄绪林发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
灯箱发布了新的文献求助10
3秒前
4秒前
科目三应助研雾采纳,获得10
4秒前
疯子完成签到,获得积分10
4秒前
4秒前
4秒前
上弦月发布了新的文献求助10
5秒前
Hilda007发布了新的文献求助10
6秒前
6秒前
烟花应助英俊乌龟采纳,获得10
6秒前
孤独静枫发布了新的文献求助10
6秒前
Young应助晞嘻采纳,获得10
7秒前
Sylvia发布了新的文献求助10
7秒前
7秒前
时安完成签到,获得积分10
8秒前
8秒前
沧沧发布了新的文献求助10
8秒前
李健应助小文采纳,获得30
8秒前
可爱的函函应助Dr.c采纳,获得10
8秒前
8秒前
lee发布了新的文献求助10
8秒前
彳亍发布了新的文献求助10
8秒前
明理的青寒完成签到 ,获得积分10
9秒前
于呆呆完成签到,获得积分10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614862
求助须知:如何正确求助?哪些是违规求助? 4699807
关于积分的说明 14905197
捐赠科研通 4740557
什么是DOI,文献DOI怎么找? 2547802
邀请新用户注册赠送积分活动 1511593
关于科研通互助平台的介绍 1473715