High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data

激光雷达 随机森林 森林资源清查 森林生态学 环境科学 遥感 森林经营 降水 仰角(弹道) 地理 自然地理学 生态系统 气象学 生态学 农林复合经营 数学 计算机科学 机器学习 生物 几何学
作者
Xudong Lin,Rong Shang,Jing M. Chen,Guoshuai Zhao,Xiao–Ping Zhang,Yiping Huang,Guirui Yu,Nianpeng He,Li Xu,Wenzhe Jiao
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:339: 109592-109592 被引量:20
标识
DOI:10.1016/j.agrformet.2023.109592
摘要

Forest age is a key parameter for estimating forest growth and carbon uptake and for forest management. Remote sensing provides indirect but useful information for mapping forest age at large scales. However, existing regional and global forest age products were generated at low spatial resolutions (often 1000 m) and are not useful for most forest stands in China that are smaller than 1000 m. This study aims to map forest age at the 30 m resolution based on forest height maps mainly derived from the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data, and analyze the roles of auxiliary data including temperature, precipitation, slope, and aspect in forest age mapping. Forest age is defined as the average age of dominant tree species within a pixel. Five commonly-used stand growth equations and twelve machine learning methods were tested for their suitability for mapping forest age of different tree species. We found that the Logistic equation performed the best among the tested stand growth equations and the Random Forest (RF) was the best among the tested machine learning methods. According to RF, forest height contributed predominantly to the variance in forest age mapping, while temperature, precipitation, slope, and aspect also had an overall non-negligible and variable contribution among different tree species. By integrating the climate and topographical variables, RF was applicable for forest age mapping without classifying the tree species. These results show that forest height maps derived from space-borne lidar data such as GEDI and ICESat-2 data are highly useful for mapping forest stand age, and the methodology developed in this study highlights a perspective for generating national and global forest age products at a high spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助PhD-SCAU采纳,获得30
刚刚
EddyLalala完成签到,获得积分10
2秒前
淡淡文博完成签到,获得积分20
2秒前
EddyLalala发布了新的文献求助10
4秒前
Jam发布了新的文献求助10
6秒前
wanci应助wwwwppp采纳,获得10
7秒前
6rkuttsmdt完成签到,获得积分10
7秒前
852应助小青虫采纳,获得10
9秒前
彭于晏应助家园采纳,获得30
10秒前
13秒前
无语的梦菲完成签到,获得积分10
16秒前
Xiaojiu完成签到 ,获得积分10
17秒前
17秒前
seon发布了新的文献求助10
19秒前
酷酷的老太完成签到,获得积分10
25秒前
灵巧的馒头完成签到,获得积分20
29秒前
31秒前
31秒前
健壮保温杯完成签到,获得积分10
32秒前
michellewu完成签到 ,获得积分10
35秒前
wwwwppp发布了新的文献求助10
35秒前
Nostalgia完成签到,获得积分10
35秒前
宝贝蛋完成签到,获得积分10
35秒前
瓜子完成签到,获得积分10
38秒前
38秒前
英俊的铭应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
Estrella应助科研通管家采纳,获得10
39秒前
汉堡包应助科研通管家采纳,获得10
39秒前
深情安青应助科研通管家采纳,获得10
39秒前
星辰大海应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
共享精神应助科研通管家采纳,获得10
40秒前
40秒前
传奇3应助科研通管家采纳,获得10
40秒前
Lucas应助共产主义接班人采纳,获得10
40秒前
标致的初之完成签到,获得积分10
42秒前
42秒前
44秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735903
求助须知:如何正确求助?哪些是违规求助? 3279592
关于积分的说明 10016324
捐赠科研通 2996292
什么是DOI,文献DOI怎么找? 1644012
邀请新用户注册赠送积分活动 781709
科研通“疑难数据库(出版商)”最低求助积分说明 749425