High-resolution forest age mapping based on forest height maps derived from GEDI and ICESat-2 space-borne lidar data

激光雷达 随机森林 森林资源清查 森林生态学 环境科学 遥感 森林经营 降水 地理 自然地理学 生态系统 气象学 生态学 农林复合经营 计算机科学 生物 机器学习
作者
Xudong Lin,Rong Shang,Jing M. Chen,Guoshuai Zhao,Xiao–Ping Zhang,Yiping Huang,Guirui Yu,Nianpeng He,Li Xu,Wenzhe Jiao
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:339: 109592-109592 被引量:17
标识
DOI:10.1016/j.agrformet.2023.109592
摘要

Forest age is a key parameter for estimating forest growth and carbon uptake and for forest management. Remote sensing provides indirect but useful information for mapping forest age at large scales. However, existing regional and global forest age products were generated at low spatial resolutions (often 1000 m) and are not useful for most forest stands in China that are smaller than 1000 m. This study aims to map forest age at the 30 m resolution based on forest height maps mainly derived from the Global Ecosystem Dynamics Investigation (GEDI) and Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) data, and analyze the roles of auxiliary data including temperature, precipitation, slope, and aspect in forest age mapping. Forest age is defined as the average age of dominant tree species within a pixel. Five commonly-used stand growth equations and twelve machine learning methods were tested for their suitability for mapping forest age of different tree species. We found that the Logistic equation performed the best among the tested stand growth equations and the Random Forest (RF) was the best among the tested machine learning methods. According to RF, forest height contributed predominantly to the variance in forest age mapping, while temperature, precipitation, slope, and aspect also had an overall non-negligible and variable contribution among different tree species. By integrating the climate and topographical variables, RF was applicable for forest age mapping without classifying the tree species. These results show that forest height maps derived from space-borne lidar data such as GEDI and ICESat-2 data are highly useful for mapping forest stand age, and the methodology developed in this study highlights a perspective for generating national and global forest age products at a high spatial resolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助onetec采纳,获得10
1秒前
小雷发布了新的文献求助10
3秒前
3秒前
zhaowen完成签到,获得积分10
3秒前
霸气水儿关注了科研通微信公众号
4秒前
科研通AI2S应助Dong采纳,获得30
4秒前
郭先生发布了新的文献求助10
7秒前
7秒前
10秒前
11秒前
12秒前
mzn6664完成签到,获得积分20
13秒前
科研小白发布了新的文献求助10
13秒前
思源应助高贵八宝粥采纳,获得50
15秒前
有魅力小白菜完成签到,获得积分10
15秒前
小野菌发布了新的文献求助10
15秒前
多多多111发布了新的文献求助10
17秒前
17秒前
水水完成签到,获得积分20
17秒前
霸气水儿发布了新的文献求助10
18秒前
张飞飞飞飞飞完成签到,获得积分10
18秒前
欧阳静芙完成签到,获得积分10
19秒前
夕荀发布了新的文献求助20
19秒前
20240901完成签到,获得积分10
19秒前
20秒前
NexusExplorer应助多情的涵易采纳,获得10
20秒前
桐桐应助Xunr采纳,获得20
20秒前
不知名研究生应助锖青磁采纳,获得10
20秒前
24秒前
Zhang完成签到,获得积分10
25秒前
26秒前
26秒前
26秒前
郭先生完成签到,获得积分10
28秒前
laura发布了新的文献求助10
29秒前
30秒前
小小鱼发布了新的文献求助10
30秒前
31秒前
meng完成签到 ,获得积分10
31秒前
我是老大应助科研通管家采纳,获得10
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163904
求助须知:如何正确求助?哪些是违规求助? 2814758
关于积分的说明 7906420
捐赠科研通 2474340
什么是DOI,文献DOI怎么找? 1317459
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198