Understanding the Improved Fast Charging Performance of Graphite Anodes with a Fluoroethylene Carbonate Additive by In Situ NMR and EPR

电子顺磁共振 石墨 材料科学 电解质 阳极 化学工程 原位 动力学 分析化学(期刊) 电极 核磁共振 化学 物理化学 复合材料 有机化学 物理 量子力学 工程类
作者
Shinuo Kang,Fushan Geng,Xiaobing Lou,Guozhong Lu,Yuxin Liao,Ming Shen,Bingwen Hu
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (14): 7596-7606 被引量:8
标识
DOI:10.1021/acsaem.3c01034
摘要

The extreme fast charging (XFC) capability of graphite anodes is becoming increasingly important with the development of electric vehicles due to the usage and safety requirement. In this work, the XFC performance of the graphite anodes is improved by simply adding fluoroethylene carbonate (FEC) into the electrolyte. This robust system is studied by in situ nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) experiments to unravel the kinetic mechanism. The Li local environments in the graphite are detected by in situ NMR, which reveals the phase transitions during XFC without and with the FEC additive and the corresponding Li-ion mobility. The graphite conductivity variation is estimated by in situ EPR, and the plated Li can be clearly observed in the later period of XFC. The kinetics of graphite lithiation is deduced to be surface-controlled during the dilute stages and bulk-controlled during the dense stages. The solid electrolyte interphase (SEI) formed with FEC is more homogeneous and richer in LiF, which delivers a faster Li+ transport ability and results in the improvement of the surface kinetics. The major advantage of FEC additive is in the optimization of the Li plating behavior. Without FEC, the Li deposits grow locally, while the FEC additive consumes more currents to form the SEI and facilitate the uniform deposition of metallic Li on graphite during XFC. These results display the versatility of in situ NMR and EPR technologies in the research of XFC kinetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_IEEE快到碗里来完成签到,获得积分10
2秒前
哈哈大笑应助吴岳采纳,获得10
2秒前
2秒前
酷炫中蓝完成签到,获得积分10
2秒前
早川完成签到 ,获得积分10
3秒前
拼搏语薇完成签到,获得积分10
3秒前
科研通AI5应助SCI采纳,获得10
4秒前
dling02完成签到 ,获得积分10
4秒前
4秒前
是天使呢完成签到,获得积分10
4秒前
5秒前
5秒前
内向秋寒发布了新的文献求助10
5秒前
cc发布了新的文献求助10
5秒前
ding应助zhui采纳,获得10
6秒前
drwang120完成签到 ,获得积分10
6秒前
坨坨西州完成签到,获得积分10
7秒前
海绵体宝宝应助Louise采纳,获得20
7秒前
小马甲应助lichaoyes采纳,获得10
7秒前
7秒前
8秒前
8秒前
坨坨西州发布了新的文献求助10
9秒前
彬彬发布了新的文献求助10
9秒前
大模型应助Abao采纳,获得10
9秒前
sfw驳回了苏照杭应助
10秒前
dingdong发布了新的文献求助10
10秒前
别拖延了要毕业啊完成签到,获得积分10
11秒前
11秒前
11秒前
Rrr发布了新的文献求助10
11秒前
dingdong发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
yuan发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794