亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning framework to improve the quality of cone‐beam computed tomography for radiotherapy scenarios

锥束ct 计算机科学 深度学习 威尔科克森符号秩检验 放射治疗 图像质量 人工智能 放射治疗计划 影像引导放射治疗 计算机断层摄影术 医学 核医学 医学影像学 放射科 图像(数学) 内科学 曼惠特尼U检验
作者
Bining Yang,Yuxiang Liu,Ji Zhu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7641-7653 被引量:8
标识
DOI:10.1002/mp.16562
摘要

Abstract Background The application of cone‐beam computed tomography (CBCT) in image‐guided radiotherapy and adaptive radiotherapy remains limited due to its poor image quality. Purpose In this study, we aim to develop a deep learning framework to generate high‐quality CBCT images for therapeutic applications. Methods The synthetic CT (sCT) generation from the CBCT was proposed using a transformer‐based network with a hybrid loss function. The network was trained and validated using the data from 176 patients to produce a general model that can be extensively applied to enhance CBCT images. After the first therapy, each patient can receive paired CBCT/planning CT (pCT) scans, and the obtained data were used to fine‐tune the general model for further improvement. For subsequent treatment, a patient‐specific, personalized model was made available. In total, 34 patients were examined for general model testing, and another six patients who underwent rescanned pCT scan were used for personalized model training and testing. Results The general model decreased the mean absolute error (MAE) from 135 HU to 59 HU as compared to the CBCT. The hybrid loss function demonstrated superior performance in CT number correction and noise/artifacts reduction. The proposed transformer‐based network also showed superior power in CT number correction compared to the classical convolutional neural network. The personalized model showed improvement based on the general model in some details, and the MAE was reduced from 59 HU (for the general model) to 57 HU ( p < 0.05 Wilcoxon signed‐rank test). Conclusion We established a deep learning framework based on transformer for clinical needs. The deep learning model demonstrated potential for continuous improvement with the help of a suggested personalized training strategy compatible with the clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从前的我完成签到 ,获得积分10
5秒前
Wa1Zh0u发布了新的文献求助10
12秒前
26秒前
研友_Zb17ln发布了新的文献求助10
30秒前
null应助研友_Zb17ln采纳,获得10
38秒前
44秒前
SDNUDRUG完成签到,获得积分10
57秒前
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
wggggggy发布了新的文献求助10
2分钟前
思源应助zone54188采纳,获得10
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
今后应助无情的琳采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
ding应助Wa1Zh0u采纳,获得30
3分钟前
无情的琳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
null应助wggggggy采纳,获得10
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
子訡完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723993
求助须知:如何正确求助?哪些是违规求助? 5283171
关于积分的说明 15299496
捐赠科研通 4872203
什么是DOI,文献DOI怎么找? 2616637
邀请新用户注册赠送积分活动 1566530
关于科研通互助平台的介绍 1523401