Deep learning framework to improve the quality of cone‐beam computed tomography for radiotherapy scenarios

锥束ct 计算机科学 深度学习 威尔科克森符号秩检验 放射治疗 图像质量 人工智能 放射治疗计划 影像引导放射治疗 计算机断层摄影术 医学 核医学 医学影像学 放射科 图像(数学) 内科学 曼惠特尼U检验
作者
Bining Yang,Yuxiang Liu,Ji Zhu,Jianrong Dai,Kuo Men
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7641-7653 被引量:7
标识
DOI:10.1002/mp.16562
摘要

The application of cone-beam computed tomography (CBCT) in image-guided radiotherapy and adaptive radiotherapy remains limited due to its poor image quality.In this study, we aim to develop a deep learning framework to generate high-quality CBCT images for therapeutic applications.The synthetic CT (sCT) generation from the CBCT was proposed using a transformer-based network with a hybrid loss function. The network was trained and validated using the data from 176 patients to produce a general model that can be extensively applied to enhance CBCT images. After the first therapy, each patient can receive paired CBCT/planning CT (pCT) scans, and the obtained data were used to fine-tune the general model for further improvement. For subsequent treatment, a patient-specific, personalized model was made available. In total, 34 patients were examined for general model testing, and another six patients who underwent rescanned pCT scan were used for personalized model training and testing.The general model decreased the mean absolute error (MAE) from 135 HU to 59 HU as compared to the CBCT. The hybrid loss function demonstrated superior performance in CT number correction and noise/artifacts reduction. The proposed transformer-based network also showed superior power in CT number correction compared to the classical convolutional neural network. The personalized model showed improvement based on the general model in some details, and the MAE was reduced from 59 HU (for the general model) to 57 HU (p < 0.05 Wilcoxon signed-rank test).We established a deep learning framework based on transformer for clinical needs. The deep learning model demonstrated potential for continuous improvement with the help of a suggested personalized training strategy compatible with the clinical workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤奋的灯完成签到 ,获得积分10
1秒前
666完成签到 ,获得积分10
1秒前
大Doctor陈发布了新的文献求助10
3秒前
中科路2020完成签到,获得积分10
4秒前
5秒前
ange完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
why完成签到,获得积分10
7秒前
7秒前
11秒前
洁净斑马发布了新的文献求助10
12秒前
菲菲完成签到 ,获得积分10
12秒前
偶吼吼完成签到,获得积分10
12秒前
Xu_W卜完成签到,获得积分10
12秒前
斯文钢笔完成签到 ,获得积分10
13秒前
敏敏完成签到 ,获得积分10
14秒前
ha完成签到 ,获得积分10
14秒前
畅快代亦完成签到,获得积分10
15秒前
15秒前
evilbatuu完成签到,获得积分10
16秒前
等待的代容完成签到,获得积分10
17秒前
丰富的大地完成签到,获得积分10
19秒前
中华牌老阿姨完成签到,获得积分0
20秒前
大Doctor陈发布了新的文献求助10
21秒前
劳达完成签到,获得积分10
22秒前
自然秋柳完成签到 ,获得积分10
22秒前
shinen完成签到,获得积分10
23秒前
poplar完成签到,获得积分10
24秒前
短巷完成签到 ,获得积分10
25秒前
忧伤的二锅头完成签到 ,获得积分10
25秒前
研友_ZzrWKZ完成签到 ,获得积分10
27秒前
狼来了aas完成签到,获得积分10
27秒前
大Doctor陈发布了新的文献求助10
28秒前
dlut0407完成签到,获得积分0
28秒前
鸢尾完成签到,获得积分10
29秒前
111111完成签到,获得积分10
30秒前
晚星完成签到,获得积分10
31秒前
kourosz完成签到,获得积分10
32秒前
细心的代天完成签到 ,获得积分10
36秒前
王十二完成签到 ,获得积分10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015