Evaluation of Factors Influencing the Compaction Characteristic of Recycled Aggregate Asphalt Mixture

压实 级配 沥青 骨料(复合) 岩土工程 材料科学 环境科学 田口方法 复合材料 工程类 计算机科学 计算机视觉
作者
Jing Hu,Bin Lin,Qibo Huang,Pengfei Liu
出处
期刊:Journal of Materials in Civil Engineering [American Society of Civil Engineers]
卷期号:35 (9) 被引量:1
标识
DOI:10.1061/jmcee7.mteng-15800
摘要

Aggregate and air void distribution determined by compaction commonly affects damage appearance and development inside asphalt mixture and is related to asphalt pavement durability and quality. The main objective of this study is to investigate the recycled aggregate (RA) effect on asphalt mixture compaction behavior under different engineering conditions. First, the aggregate fragmentation caused by compaction effort was simulated using the superpave gyratory compactor. In this regard, the influences of aggregate type and RA content were investigated. Second, the indoor experiment scheme was determined using the Taguchi method to obtain compaction data of recycled aggregate asphalt mixture (RAAM). Finally, a genetic algorithm-based backpropagation (GA-BP) artificial neural network (ANN) model using the 216 data sets of the indoor experiment was developed to predict and explore the relative contribution of engineering-conditions-related parameters to RAAM compaction difficulty. The results showed that the aggregate particles suffer fragmentation mainly in the early compaction of recycled aggregate asphalt mixture. The effect of RA on aggregate fragmentation during the compaction process is not statistically significant. The 10-14-1 GA-based BP ANN model developed in this study is an effective method in predicting the compaction energy consumption of RAAM with a correlation coefficient (R2) of 98.59% and a mean-squared error value of 0.6266. The gradation shape, NMAS, FI3d, AI3d, and T3d and incorporated content of recycled aggregate have a considerable positive correlation with the compaction difficulty. The limitation of this study is that the compaction difficulty prediction model is developed according to indoor test data. Therefore, the model’s applicability to field pavement projects required further practical verification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵喵666完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
沿途有你完成签到 ,获得积分10
2秒前
尹梦成完成签到,获得积分10
2秒前
爆米花应助lilililia采纳,获得10
2秒前
HJJHJH发布了新的文献求助10
3秒前
三三得九完成签到 ,获得积分10
5秒前
华仔应助张小盒采纳,获得10
5秒前
科研通AI6.1应助汪宇采纳,获得10
6秒前
7秒前
烟花应助Dylan采纳,获得10
9秒前
爆米花完成签到,获得积分10
10秒前
风趣烤鸡完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
16秒前
ivy完成签到 ,获得积分10
16秒前
咕噜圈儿完成签到,获得积分10
18秒前
yurany完成签到 ,获得积分10
19秒前
ruibo发布了新的文献求助30
19秒前
忧伤的雅绿关注了科研通微信公众号
20秒前
22秒前
汪宇发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
27秒前
29秒前
totoo2021完成签到,获得积分10
30秒前
31秒前
岩下松风完成签到,获得积分10
32秒前
32秒前
果子完成签到 ,获得积分10
33秒前
新伟张发布了新的文献求助10
34秒前
panqi发布了新的文献求助10
34秒前
无尘完成签到 ,获得积分10
36秒前
Dylan发布了新的文献求助10
38秒前
fluu完成签到,获得积分20
38秒前
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896