Evaluation of Factors Influencing the Compaction Characteristic of Recycled Aggregate Asphalt Mixture

压实 级配 沥青 骨料(复合) 岩土工程 材料科学 环境科学 田口方法 复合材料 工程类 计算机科学 计算机视觉
作者
Jing Hu,Bin Lin,Qibo Huang,Pengfei Liu
出处
期刊:Journal of Materials in Civil Engineering [American Society of Civil Engineers]
卷期号:35 (9) 被引量:1
标识
DOI:10.1061/jmcee7.mteng-15800
摘要

Aggregate and air void distribution determined by compaction commonly affects damage appearance and development inside asphalt mixture and is related to asphalt pavement durability and quality. The main objective of this study is to investigate the recycled aggregate (RA) effect on asphalt mixture compaction behavior under different engineering conditions. First, the aggregate fragmentation caused by compaction effort was simulated using the superpave gyratory compactor. In this regard, the influences of aggregate type and RA content were investigated. Second, the indoor experiment scheme was determined using the Taguchi method to obtain compaction data of recycled aggregate asphalt mixture (RAAM). Finally, a genetic algorithm-based backpropagation (GA-BP) artificial neural network (ANN) model using the 216 data sets of the indoor experiment was developed to predict and explore the relative contribution of engineering-conditions-related parameters to RAAM compaction difficulty. The results showed that the aggregate particles suffer fragmentation mainly in the early compaction of recycled aggregate asphalt mixture. The effect of RA on aggregate fragmentation during the compaction process is not statistically significant. The 10-14-1 GA-based BP ANN model developed in this study is an effective method in predicting the compaction energy consumption of RAAM with a correlation coefficient (R2) of 98.59% and a mean-squared error value of 0.6266. The gradation shape, NMAS, FI3d, AI3d, and T3d and incorporated content of recycled aggregate have a considerable positive correlation with the compaction difficulty. The limitation of this study is that the compaction difficulty prediction model is developed according to indoor test data. Therefore, the model’s applicability to field pavement projects required further practical verification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
握瑾怀瑜完成签到 ,获得积分0
刚刚
淞淞于我完成签到 ,获得积分10
2秒前
小鱼儿完成签到 ,获得积分10
4秒前
xz完成签到 ,获得积分10
10秒前
yanmh完成签到,获得积分10
10秒前
11秒前
13秒前
14秒前
20秒前
不过尔尔完成签到 ,获得积分10
23秒前
珍珠火龙果完成签到 ,获得积分10
23秒前
稳重的白猫完成签到,获得积分10
26秒前
qianci2009完成签到,获得积分10
27秒前
ll完成签到 ,获得积分10
31秒前
敖江风云完成签到,获得积分10
32秒前
bckl888完成签到,获得积分10
32秒前
33秒前
欧阳月空发布了新的文献求助10
40秒前
KrisTina完成签到 ,获得积分10
42秒前
红茸茸羊完成签到 ,获得积分10
48秒前
欧阳月空完成签到,获得积分10
59秒前
不再一样完成签到,获得积分10
1分钟前
FUNG完成签到 ,获得积分10
1分钟前
1分钟前
股价发布了新的文献求助30
1分钟前
木子完成签到 ,获得积分10
1分钟前
3120221053完成签到,获得积分10
1分钟前
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
宛海发布了新的文献求助10
1分钟前
105完成签到 ,获得积分10
1分钟前
1分钟前
Wen完成签到 ,获得积分10
1分钟前
宛海完成签到,获得积分10
1分钟前
恒牙完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
2316690509完成签到 ,获得积分10
1分钟前
不再挨训完成签到 ,获得积分10
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965744
求助须知:如何正确求助?哪些是违规求助? 3510977
关于积分的说明 11155814
捐赠科研通 3245469
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804251