Predicting future capacity of lithium-ion batteries using transfer learning method

电池(电) 健康状况 电池容量 希尔伯特-黄变换 计算机科学 可靠性工程 锂离子电池 支持向量机 功率(物理) 工程类 人工智能 物理 滤波器(信号处理) 量子力学 计算机视觉
作者
Jia‐Hong Chou,Fu‐Kwun Wang,Shih‐Che Lo
出处
期刊:Journal of energy storage [Elsevier]
卷期号:71: 108120-108120 被引量:13
标识
DOI:10.1016/j.est.2023.108120
摘要

Lithium-ion (Li-ion) batteries have numerous applications, such as electric vehicles, power tools, medical devices, drones, satellites, and utility-scale storage. Remaining useful life (RUL) prediction is a challenging task due to the highly nonlinear degradation behavior and prediction of batteries dealing with unknown future data. Online RUL prediction for Li-ion batteries plays an important role in proper battery health management. To improve the prediction accuracy of RUL, we propose a novel hybrid method based on transfer learning to predict the future capacity of Li-ion batteries. The proposed method consists of integrating an ensemble empirical mode decomposition algorithm, a support vector regression model, and a bidirectional long short-term memory with attention mechanism model to predict the state of health (SOH), where SOH is the battery cycle life and discharge capacity measured in number of cycles. In addition, we also consider keen-onset effects. The performance of RUL predictions using different starting RUL prediction points is compared with experiments. The proposed method shows that the larger the cycle number of the RUL prediction starting point, the more accurate the RUL prediction results. The relative error values for the three different charging policy target batteries using the proposed method are 6.96 %, 0.6 %, and 6.25 %, respectively. The proposed method is effective for predicting the future capacity of Li-ion batteries and can be applied to predictive maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shego发布了新的文献求助10
刚刚
momo发布了新的文献求助10
1秒前
丘比特应助fann采纳,获得10
3秒前
3秒前
丰富的刺猬完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
yuanjun完成签到,获得积分20
7秒前
慕青应助jia采纳,获得20
7秒前
8秒前
彭于晏应助lingxu采纳,获得10
8秒前
小透明发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
独特涵柏发布了新的文献求助10
11秒前
鲤角兽完成签到,获得积分10
12秒前
诸沧海发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
errui完成签到,获得积分10
14秒前
何海发布了新的文献求助10
14秒前
14秒前
15秒前
无极微光应助健壮平灵采纳,获得20
15秒前
16秒前
18秒前
华仔应助白泽采纳,获得10
18秒前
1nooooo完成签到 ,获得积分10
18秒前
18秒前
心灵尔安完成签到,获得积分10
18秒前
科研通AI2S应助jmy1995采纳,获得10
19秒前
MLY发布了新的文献求助10
19秒前
研友_VZG7GZ应助123采纳,获得30
19秒前
19秒前
Lucas应助诸沧海采纳,获得10
20秒前
xu发布了新的文献求助30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213