Reduced-Order Modeling with Time-Dependent Bases for PDEs with Stochastic Boundary Conditions

数学 正交性 应用数学 边值问题 正交性 离散化 偏微分方程 数学分析 正交基 物理 几何学 量子力学
作者
Prerna Patil,Hessam Babaee
出处
期刊:SIAM/ASA Journal on Uncertainty Quantification [Society for Industrial and Applied Mathematics]
卷期号:11 (3): 727-756 被引量:2
标识
DOI:10.1137/21m1468097
摘要

Low-rank approximation using time-dependent bases (TDBs) has proven effective for reduced-order modeling of stochastic partial differential equations (SPDEs). In these techniques, the random field is decomposed to a set of deterministic TDBs and time-dependent stochastic coefficients. When applied to SPDEs with nonhomogeneous stochastic boundary conditions (BCs), appropriate BC must be specified for each of the TDBs. However, determining BCs for TDB is not trivial because (i) the dimension of the random BCs is different than the rank of the TDB subspace and (ii) TDB in most formulations must preserve orthonormality or orthogonality constraints, and specifying BCs for TDB should not violate these constraints in the space-discretized form. In this work, we present a methodology for determining the boundary conditions for TDBs at no additional computational cost beyond that of solving the same SPDE with homogeneous BCs. Our methodology is informed by the fact the TDB evolution equations are the optimality conditions of a variational principle. We leverage the same variational principle to derive an evolution equation for the value of TDB at the boundaries. The presented methodology preserves the orthonormality or orthogonality constraints of TDBs. We present the formulation for the dynamically biorthonormal decomposition [P. Patil and H. Babaee, J. Comput. Phys., (2020), 109511] as well as the dynamically orthogonal decomposition [T. P. Sapsis and P. F. Lermusiaux, Phys. D, 238 (2009), pp. 2347–2360]. We show that the presented methodology can be applied to stochastic Dirichlet, Neumann, and Robin boundary conditions. We assess the performance of the presented method for linear advection-diffusion equation, Burgers’ equation, and 2D advection-diffusion equation with constant and temperature-dependent conduction coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助简单的钢铁侠采纳,获得10
1秒前
purplemoon发布了新的文献求助10
2秒前
幽默的溪灵完成签到,获得积分0
2秒前
鲤鱼十三完成签到 ,获得积分10
2秒前
qq应助小蚊子采纳,获得10
3秒前
璟晔发布了新的文献求助10
5秒前
33完成签到,获得积分10
6秒前
tt完成签到,获得积分10
6秒前
bkagyin应助无话可说采纳,获得10
6秒前
8秒前
somnus完成签到,获得积分10
9秒前
qian完成签到 ,获得积分10
9秒前
Curry完成签到,获得积分10
9秒前
LEE佳完成签到 ,获得积分10
12秒前
123456完成签到,获得积分10
12秒前
花玥鹿完成签到,获得积分10
13秒前
13秒前
小虫子爱学习完成签到,获得积分0
14秒前
Akim应助Esther采纳,获得10
15秒前
山山而川应助西南楚留香采纳,获得20
15秒前
18秒前
Akim应助breath采纳,获得10
18秒前
魁梧的海秋应助半栀采纳,获得10
18秒前
CodeCraft应助璟晔采纳,获得10
18秒前
登登发布了新的文献求助10
19秒前
852应助pwang_ecust采纳,获得10
19秒前
江湖小妖发布了新的文献求助10
19秒前
Jasper应助急急吉吉采纳,获得10
19秒前
22秒前
22秒前
鲤鱼笑白完成签到,获得积分10
23秒前
深情安青应助something采纳,获得10
27秒前
33秒前
科目三应助贪玩的白玉采纳,获得10
34秒前
刘小雨发布了新的文献求助30
34秒前
B1n发布了新的文献求助20
35秒前
36秒前
36秒前
星辰大海应助玳瑁猫采纳,获得10
37秒前
打打应助vn采纳,获得10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258428
求助须知:如何正确求助?哪些是违规求助? 2900254
关于积分的说明 8309521
捐赠科研通 2569521
什么是DOI,文献DOI怎么找? 1395780
科研通“疑难数据库(出版商)”最低求助积分说明 653277
邀请新用户注册赠送积分活动 631195