Reduced-Order Modeling with Time-Dependent Bases for PDEs with Stochastic Boundary Conditions

数学 正交性 应用数学 边值问题 正交性 离散化 偏微分方程 数学分析 正交基 物理 几何学 量子力学
作者
Prerna Patil,Hessam Babaee
出处
期刊:SIAM/ASA Journal on Uncertainty Quantification [Society for Industrial and Applied Mathematics]
卷期号:11 (3): 727-756 被引量:2
标识
DOI:10.1137/21m1468097
摘要

Low-rank approximation using time-dependent bases (TDBs) has proven effective for reduced-order modeling of stochastic partial differential equations (SPDEs). In these techniques, the random field is decomposed to a set of deterministic TDBs and time-dependent stochastic coefficients. When applied to SPDEs with nonhomogeneous stochastic boundary conditions (BCs), appropriate BC must be specified for each of the TDBs. However, determining BCs for TDB is not trivial because (i) the dimension of the random BCs is different than the rank of the TDB subspace and (ii) TDB in most formulations must preserve orthonormality or orthogonality constraints, and specifying BCs for TDB should not violate these constraints in the space-discretized form. In this work, we present a methodology for determining the boundary conditions for TDBs at no additional computational cost beyond that of solving the same SPDE with homogeneous BCs. Our methodology is informed by the fact the TDB evolution equations are the optimality conditions of a variational principle. We leverage the same variational principle to derive an evolution equation for the value of TDB at the boundaries. The presented methodology preserves the orthonormality or orthogonality constraints of TDBs. We present the formulation for the dynamically biorthonormal decomposition [P. Patil and H. Babaee, J. Comput. Phys., (2020), 109511] as well as the dynamically orthogonal decomposition [T. P. Sapsis and P. F. Lermusiaux, Phys. D, 238 (2009), pp. 2347–2360]. We show that the presented methodology can be applied to stochastic Dirichlet, Neumann, and Robin boundary conditions. We assess the performance of the presented method for linear advection-diffusion equation, Burgers’ equation, and 2D advection-diffusion equation with constant and temperature-dependent conduction coefficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏完成签到,获得积分10
刚刚
fixit发布了新的文献求助10
1秒前
1秒前
1秒前
糊糊发布了新的文献求助10
1秒前
任小九完成签到,获得积分10
2秒前
3秒前
爱因斯宣发布了新的文献求助10
3秒前
俊秀的乐蓉完成签到,获得积分10
3秒前
张XX完成签到,获得积分10
4秒前
充电宝应助XUXU采纳,获得10
4秒前
everyone_woo发布了新的文献求助10
4秒前
yznfly应助冷酷仙境的羊男采纳,获得30
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
饮一杯为谁丶完成签到,获得积分10
5秒前
Alex应助科研通管家采纳,获得10
5秒前
Alex应助科研通管家采纳,获得20
5秒前
5秒前
FashionBoy应助科研通管家采纳,获得30
6秒前
laryc完成签到,获得积分10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
6秒前
华仔应助科研通管家采纳,获得50
6秒前
FashionBoy应助科研通管家采纳,获得30
6秒前
考拉完成签到 ,获得积分10
6秒前
Alex应助科研通管家采纳,获得20
6秒前
阿尔图完成签到,获得积分10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
ddd应助科研通管家采纳,获得100
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
7秒前
he完成签到 ,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
Jasper应助虚幻小丸子采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128